
Destination .NET:
Migrating to

Visual Basic .NET

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Portions copyright © 2002 by Francesco Balena, John Connell, and Microsoft Corporation
Portions copyright © 2003 by James Foxall.

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or
by any means without the written permission of the publisher.

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWT 8 7 6 5 4 3

Microsoft Press books are available through booksellers and distributors worldwide. For further informa-
tion about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress.

Active Directory, Microsoft, Microsoft Press, the .NET logo, Visual Basic, Visual C++, Visual C#, Visual
Studio, Win32, Windows, and Windows NT are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries. Other product and company names mentioned
herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people,
places, and events depicted herein are fictitious. No association with any real company, organization,
product, domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

Acquisitions Editor: Rob Linsky
Project Editor: Barbara Moreland

SubAssy Part No. X09-48685
Body Part No. X09-48686

The readings in this book are taken from the following Microsoft Press publications.
You can find complete descriptions of each title at the end of this book.

Upgrading Microsoft Visual Basic 6 to Microsoft Visual Basic .NET
Ed Robinson, Mike Bond, Robert Ian Oliver

Programming Microsoft Visual Basic .NET
Francesco Balena

Practical Standards for Microsoft Visual Basic .NET
James Foxall

Coding Techniques for Microsoft Visual Basic .NET
John Connell

Developing Windows-Based Applications with Microsoft Visual Basic .NET and
Microsoft Visual C# .NET (Training Kit)

v

Table of Contents
Introduction xi

Part I Visual Basic .NET
1 Visual Basic .NET Is More Than Visual Basic 6 + 1 3

Why Break Compatibility? 6
Adding New Features 6
Fixing the Language 7
Modernizing the Language 8

It Is Still Visual Basic 8
Expect Subtle Differences 8
Plan for a 95 Percent Automated Upgrade 9

Why Should I Upgrade? 10
New Language Features 10
Windows Forms 15
New Web Development Features 16
Better Development Environment 16
Is Visual Basic Still the Best Choice for Visual Basic Developers? 17

2 Visual Basic 6 and Visual Basic .NET: Differences 21
.NET Framework vs. ActiveX 21

.NET Framework 23
Memory Management 24
Type Identity 27
Threading Model 30

Differences in the Development Environment 31
Menu Editor 32
Toolbox 33
Property Browser 34
Tab Layout Editor 35

Forms Packages 36
A Single Standard for Windows Forms 36
Two Forms Packages for the Price of One 37

vi Table of Contents

Language Differences 37
All Subroutine Calls Must Have Parentheses 39
ByVal or ByRef Is Required 40
Is That My Event? 40
Arrays Must Have a Zero-Bound Lower Dimension 41
Fixed-Length Strings Are Not Supported 42
Variant Data Type Is Eliminated 42
Visibility of Variables Declared in Nested Scopes Is Limited 43

Changes in the Debugger 44
No Edit and Continue 44
Cannot Continue After an Error 44
No Repainting in Break Mode 45

The .NET Framework Class Library 45
Structures 50

3 Exception Handing 53
The Exception Object 54
Types of Exception Handlers 55
Writing an Exception Handler by Using Try...Catch...Finally 56

Catching Exceptions 58
Exception Handlers and the Call Stack 61

Central Exception Handlers 64
Logging Exceptions to a Text File 67

Directives 70
3.1 Use Try…Catch…Finally to handle unexpected as well as
anticipated exceptions. 70
3.2 Use a consistent format when dealing with
unanticipated exceptions. 71
3.3 Never blame the user. 72

4 Arrays, Lists, and Collections 75
The Array Class 75

Creating Nonzero-Based Arrays 77
Copying Arrays 78
Sorting Elements 79
Clearing, Copying, and Moving Elements 81
Searching Values 83
Arrays of Arrays 85

Table of Contents vii

The System.Collections Namespace 86
The ICollection, IList, and IDictionary Interfaces 86
The BitArray Class 88
The Stack Class 90
The Queue Class 91
The ArrayList Class 92
The Hashtable Class 95
The SortedList Class 98
The StringCollection and StringDictionary Classes 101

Custom Collection and Dictionary Classes 103
The ReadOnlyCollectionBase Abstract Class 1 103
The CollectionBase Abstract Class 105
The DictionaryBase Abstract Class 107

5 Windows Forms Applications 109
Form Basics 109

The Form Designer 110
The Windows Forms Class Hierarchy 113

Using Menus 126
Creating Menus at Design Time 126

Using the MainMenu Component 126
Separating Menu Items 128

 Modifying Menus at Run Time 130
Enabling and Disabling Menu Commands 130
Displaying Check Marks on Menu Items 131
Displaying Radio Buttons on Menu Items 131
Making Menu Items Invisible 131
Cloning Menus 132
Merging Menus at Run Time 132
Adding Menu Items at Run Time 133

Part II Object-Oriented Programming
6 Object-Oriented Programming in Visual Basic .NET 137

An Object Lesson 137
Starting Out with Objects 138

A Class Is Really Only a Blueprint 138

viii Table of Contents

Let’s Talk Objects 139
Our Form as an Object 140
Reading, Writing, Invoking 142

Inheritance 144
Understanding Namespaces 146

Polymorphism 150

7 Inheritance 151
Inheritance in Previous Visual Basic Versions 151

Inheritance by Delegation 152
Inheritance and Late-Bound Polymorphic Code 152
Early-Bound Polymorphic Code 153

Inheritance in Visual Basic .NET 154
Extending the Derived Class 155
 Using the Derived Class 155
Inheriting Events 157
Inheriting Shared Members 157
Polymorphic Behavior 158

Overriding Members in the Base Class 159
Override Variations 161
The MyBase Keyword 162
Constructors in Derived Classes 163
Finalizers in Derived Classes 165
The MyClass Keyword 166
Member Shadowing 169
Redefining Shared Members 173

Sealed and Virtual Classes 174
The NotInheritable Keyword 174
The MustInherit Keyword 175
The MustOverride Keyword 176

Scope 178
Nested Classes 178
Public, Private, and Friend Scope Qualifiers 181
The Protected Scope Qualifier 182
The Protected Friend Scope Qualifier 185
Using Scope Qualifiers with Constructors 186

Redefining Events 189

Table of Contents ix

Part III ADO.NET
8 ADO.NET 195

Introducing ADO.NET 195
Major Changes from ADO 195
.NET Data Providers 196
Database Independence with ADO.NET 197
The Connection Object 199

Setting the ConnectionString Property 200
Opening and Closing the Connection 203
Working with Transactions 209

The Command Object 213
Creating a Command Object 215
Issuing Database Commands 216
Reading Data 216
Working with Parameters and Stored Procedures 219

The DataReader Object 226
Iterating over Individual Rows 226
Reading Column Values 228
Using Specific SQL Server Types 231
Reading Multiple Resultsets 232

The DataSet Object 234
Exploring the DataSet Object Model 234

The DataAdapter Class 239
Introducing the DataAdapter 240
Reading Data from a Database 242

Adding a DataAdapter Object to Our Program 243
Finishing the User Interface 247
A Sneak Preview of Our Data from the DataAdapter 248

Part IV ASP.NET
9 ASP.NET and Web Services 253

A Look Back at ASP 253
Why ASP.NET? 254
Our First Web Form 256

New Server Controls 259

x Table of Contents

The HTML Presentation Template 261
Viewing the Code-Behind File 264
Setting the Properties on Our Web Page 265
Adding the Calendar Control Code 266
Running the Web Form 267
Examining the HTML Sent to the Browser 268

Building a Loan Payment Calculator 270
Building Our Loan Application Project 273
Adding Code to the Code-Behind Form 275
The Life of a Web Form 276
How Our Program Works 277
Taking a Closer Look at Our Drop-Down List 279
Adding the Payment Schedule Page 280
Adding Our Class Code 282
How the Calculator Works 285
Tracing Our Program 288

Web Services: The New Marketplace 289
What Are Web Services? 289
OK, Now How Do We Communicate? 290
Finding Out Who Is Offering What in the Global Marketplace 291
Where Are Web Services Going? 293

Building a Web Service 294
Run the Program 296
Consuming the MagicEightBall Web Service 299
Building Our Web Services Client Program 301
Adding a Proxy Class to Our Program 302
Adding Code to Get Our Magic Eight Ball Answers 303

Index 305

xi

Introduction
When Microsoft started to design their .NET Framework, they decided that it
would be valuable for their primary developer source languages—Visual Basic,
C++, and C# —to generate executable code (through the common language
runtime, or CLR) that would be compatible regardless of the original source lan-
guage. To achieve this goal, the languages would need to standardize on data
types, parameter passing, and a common set of support classes.

This design goal lead to some modifications to the original source lan-
guages, with Visual Basic most affected. These included changes to language
syntax, data types, and the underlying database model; more object orientation;
and a number of new and exciting features including support for Web applica-
tions and XML technologies. In the long run, these modifications will have a
positive impact on the ability of Visual Basic .NET programmers to create solu-
tions using state-of-the-art technologies. However, in the short run, the changes
from Visual Basic 6.0 will present some challenges to faculty who teach pro-
gramming in Visual Basic.

Microsoft professionals recognized these challenges and assembled a team
of college faculty members to advise them on helping other faculty move from
Visual Basic 6.0 to Visual Basic .NET. Together they have designed a transitional
course and identified material from a variety of Microsoft Press publications that
would help support the course. This book is the result of that effort.

This book does not cover the entire Visual Basic .NET language nor does
it cover the entire .NET Framework. Other books provide that complete cover-
age. Instead, the main goal for this book is to identify and document those lan-
guage features that have changed in the move from Visual Basic 6.0 to Visual
Basic .NET and to highlight new features such as the way errors are handled,
the ADO.NET database model, new and expanded object-oriented features, and
Web Forms. Along with your course material, the book will provide you with
information that should help in your transition to Microsoft Visual Basic .NET.

Many of us have been involved with teaching programming using Basic
since the original Dartmouth Basic (circa 1964). We have seen Basic evolve over
the years and have found its evolution to be valuable and exciting. We believe
that the latest incarnation of the language, Visual Basic .NET, continues the
evolution in a very positive way. Combined with the Microsoft Visual Studio

xii Introduction

IDE, Visual Basic .NET provides an awesome set of features while still maintain-
ing its ease of use for the beginner. As faculty, we have to “unlearn” some
things that we were comfortable with as we transition to Visual Basic .NET. We
must remember, however, that a student new to the language will not have to
“unlearn” anything. Thus, what we consider odd compared to the way we used
to do things will not seem that way to a student learning Visual Basic .NET for
the first time.

We hope you find this text helpful as you move from Visual Basic 6.0 to
your new destination, Visual Basic .NET.

William Burrows, Professor Emeritus
University of Washington

Part I

Visual Basic .NET

3

Reading 1

Visual Basic .NET Is More
Than Visual Basic 6 + 1

If you’re familiar with Visual Basic but aren’t familiar with Visual Basic .NET,
you may be wondering why we have written a book on upgrading. Surely
Visual Basic .NET will open Visual Basic 6 projects as effortlessly as Visual Basic
6 opens Visual Basic 5 projects. “How different can Visual Basic .NET be?” you
might ask. So before we start discussing the details of upgrading, let’s clear up
any confusion: Visual Basic .NET, the latest version of Visual Basic, is not
merely Visual Basic 6 with a few new features added on. Instead, Visual Basic
has been thoroughly redesigned and restructured. The language has been mod-
ernized, with new, richer object models for data, forms, transactions, and
almost everything else. The file formats have also changed.

Unfortunately, these changes mean that Visual Basic .NET is not entirely
backward compatible with Visual Basic 6. Projects from previous versions need
to be upgraded before they will compile and run in Visual Basic .NET. The
Upgrade Wizard handles much of this work for you, but most real-world
projects will require additional modifications before they can be run. Some peo-
ple consider moving applications from Visual Basic 6 to .NET to be a migration
rather than an upgrade, but the changes in the language are a logical step, and
they make Visual Basic more powerful than ever before.

This is an exciting time for Visual Basic developers. Sure, upgrading
applications takes some effort, but on the other hand Visual Basic .NET is
incredibly capable, extending Visual Basic’s Rapid Application Development

From Updating Microsoft Visual Basic 6.0 to Microsoft Visual Basic .NET by Ed Robinson, Mike Bond, and
Ian Oliver. pp. 3-18. (Redmond: Microsoft Press. 2002.) Copyright © 2002 by Microsoft Corporation.

4 Destination Visual Basic .NET

(RAD) model to the server and to the Web. Visual Basic .NET adds more fea-
tures to Visual Basic than did Visual Basic 2, 3, 4, 5, and 6 combined.
Microsoft made the changes because the focus of the language has shifted
from previous versions. Whereas Visual Basic 6 was primarily a Windows
development tool, Visual Basic .NET is designed to leverage the .NET plat-
form, enabling the user to create Windows applications, console applications,
class libraries, NT services, Web Forms applications, and XML Web services—
all while allowing seamless integration with other programming languages.

Let’s look a little deeper at Visual Basic .NET to see where it differs from
Visual Basic 6. We will look at the following three issues:

■ The development environment

■ The syntax of the language and object models of the classes

■ The run-time behavior of the compiled components

In each of these three areas, Visual Basic .NET departs from the conventions of
Visual Basic 6. First, the integrated development environment (IDE) has been
redesigned to house all of the Visual Studio languages: Visual Basic, C#, and
Visual C++. Second, the language itself has been modernized, removing some
keywords, such as GoSub; adding new keywords, like Inherits; and changing
the meaning of other keywords, like Return and Integer. Finally, the run-time
behavior of the compiled components is different. .NET applications are free-
threaded; Visual Basic .NET projects are compiled to “assemblies” rather than to
familiar Win32 applications, and variables and objects are garbage-collected,
meaning that they lack a deterministic lifetime. A noticeable effect of this last
change is that the class Finalize event is not triggered until sometime after the
object is actually destroyed. Let’s continue to look at what these changes mean
to the Visual Basic developer.

With so much that is new, how familiar will it all be to traditional Visual
Basic users? To what extent can you leverage your existing Visual Basic skills
when you move to Visual Basic .NET? To answer these questions, let’s take a
quick look at the history of Visual Basic.

In 1991, Microsoft released Visual Basic 1, which opened the doors to
Windows RAD. Visual Basic 1 was an instant success, and it’s easy to see why.
Before Visual Basic, developers had to write WndProc handlers, work with
pointers, and know when to apply the Pascal calling convention to methods.
Visual Basic took over the handling of all of these details, allowing developers
to concentrate on building business objects instead of writing the basic plumb-
ing in every program.

In Visual Basic versions 2 though 6, Microsoft kept the underlying archi-
tecture of the product the same and simply added new features. Visual Basic 2

Reading 1 Visual Basic .NET Is More Than Visual Basic 6 + 1 5

and 3 introduced the property grid, Data Access Objects (DAO) database pro-
gramming, and object linking and embedding (OLE), resulting in a great set of
features for Windows 3.1 programming. In 1995, Microsoft released Visual Basic 4,
which enabled developers to write 32-bit EXEs, ActiveX controls, and class
libraries. The year 1995 also saw the explosion of the Internet, and people
began wanting to build Web sites. With versions 5 and 6, Visual Basic added its
own flavor of Web development—WebClasses, ActiveX documents, and
Dynamic HTML (DHTML) pages—yet for the most part, it still remained a Win-
dows development tool.

It’s interesting to compare Visual Basic 1 with Visual Basic 6 to see how far
the language has come. Visual Basic 1 had no IntelliSense, no support for open
database connectivity (ODBC), no classes, limited debugging, no support for
COM components, no Property Browser, no Web development features, and it
created only EXEs. Visual Basic 6 had come a long way from the basic forms
and modules development of version 1, yet it still had the spirit of Visual Basic.
Visual Basic .NET also has that spirit: It has the same human-readable language,
case insensitivity, support for late binding, automatic coercions, and familiar
Visual Basic keywords, functions, and constructs, like Left$, MsgBox, and
On…Error…GoTo. If you’re a Visual Basic 6 programmer, it’s a comfortable
step to Visual Basic .NET. Yes, there are new concepts to learn, but your exist-
ing knowledge of Visual Basic is a great foundation.

After the release of Visual Basic 6, Microsoft was faced with a challenge.
Developer needs were changing. More and more programmers were develop-
ing for the Web, and the Web development capabilities built into Visual Basic 6
were not addressing their needs. Visual Basic’s DHTML pages and ActiveX
documents were client-side technologies, meaning that both the component
and the Visual Basic runtime had to be installed on client machines. Visual
Basic’s WebClasses, a server-based technology, stored state on the server and
wasn’t scalable. In addition, the design experience for both WebClasses and
DHTML pages could only be described as rudimentary! In short, the technolo-
gies were too limiting. Internet developers wanted “thin” clients, not Visual
Basic downloads. They wanted code that ran on the server. They wanted security,
and they needed scalability, since the more successful a Web site was, the more
people would use it concurrently, and therefore the more capacity it had to have.

Clearly, a better architecture was needed. Programmers had also been ask-
ing for some significant new language features: inheritance, easier access to the
underlying platform, and a solution for the many different component version-
ing problems that had collectively been labeled “DLL hell.” When looking for a
solution to these problems, Microsoft also saw the opportunity to create a uni-
fied framework for developing applications. To understand why such a frame-
work was desirable, consider that developers wanting to create forms for

6 Destination Visual Basic .NET

Windows in Visual Basic 6, Visual C++, and Microsoft Office Visual Basic for
Applications (VBA) had to learn a different forms package for each language. If
only there were a common forms package for all these products, life would be
so much simpler! This objective and others led Microsoft to develop a common
framework available to all .NET languages.

One side effect of giving all languages access to a common framework is
that each language must support the same data types. This support prevents the
sort of headaches familiar to anyone who has tried to use Windows APIs from
Visual Basic 6. Once all languages support the same data types, it’s simple to
add cross-language interoperability: inheritance, debugging, security access,
and an integrated compilation process. As you can see, the benefits of such a
system would be amazing—and that system is exactly what the .NET platform
is: a multiple-language system with a common forms package, set of base
classes, and data types. For Visual Basic to be part of this revolution meant
more than just changing the language—it meant reconceptualizing it from the
ground up for the .NET platform.

Why Break Compatibility?
Why did Microsoft redesign and restructure the language? Why couldn’t it add
these new features and still keep compatibility with Visual Basic 6? There are
several reasons for this, as we discuss in the sections that follow.

Adding New Features
Some of the new features in Visual Basic .NET could not have been added with-
out a redesign. Adding visual inheritance and accessibility support to the forms
package required redesigning the forms object model. Adding Interface state-
ments and attributes to the language made the language more powerful by
enabling a greater degree of fine-tuning but required changing the language
and file formats. Fixing “DLL hell” meant that versioning and deployment had to
be redesigned.

By far the biggest reason for the changes, however, was the need to inte-
grate Visual Basic with the .NET platform. Cross-language inheritance, debug-
ging, and unfet tered access to the underly ing APIs required the
standardization of data types across languages, which meant changing arrays
to be zero based and removing fixed-length strings from the language. Rede-
signing the Web and data access classes to be more scalable meant even more
changes from Visual Basic 6.

Reading 1 Visual Basic .NET Is More Than Visual Basic 6 + 1 7

Fixing the Language
Visual Basic has grown over time, and as the language has been extended,
some areas have become inconsistent and problematic. A good example of
such an area is default properties. The rules for when an assignment is to be a
default property and when it is to be an object have become inconsistent. Con-
sider the following Visual Basic 6 example, where Form1 is a form in the cur-
rent project:

Dim v As Variant
v = Form1

This code causes an error because Visual Basic 6 tries to assign the default
property of the form (the controls collection) to the variable v. Contrast this
behavior with the following Visual Basic 6 code:

Dim v As Variant
Set v = Form1

In this example, v is assigned the value Form1. In both examples, the right side
of the expression is exactly the same, yet the value changes depending on the
context. To anyone who didn’t write the code, it’s unclear from looking at the
code what is being assigned: the object or the default property of the object. In
Visual Basic .NET, parameterless default properties are not supported and must
be resolved.

Another example of an inconsistent feature is the New statement. Consider
the following Visual Basic 6 code:

Dim c1 As New Class1
Dim c2 As Class1: Set c2 = New Class1

At first glance, the two lines seem to do exactly the same thing. Both c1 and c2
are being set to new instances of Class1. Yet the two lines have quite different
behavior. The statement

Dim c1 As New Class1

means that the variable will be re-created if it is set to Nothing and subsequently
reused, whereas the effect of

Dim c2 As Class1: Set c2 = New Class1

is that c2 is created once. If c2 is set to Nothing, it will not be re-created auto-
matically if it is referenced again. This subtle difference in behavior can lead to
hard-to-find bugs. In Visual Basic .NET, both statements cause one instance of
the class to be created. If the class is destroyed, it is not automatically re-created
if it is referenced again.

8 Destination Visual Basic .NET

Modernizing the Language
Another reason for breaking compatibility is to modernize the language. For
example, the meaning of Long is now 64 bits, Integer is 32 bits, and the key-
word Type has been changed to Structure. Some of these changes we can prob-
ably attribute to the “floodgate effect.” Once Microsoft opened the floodgates to
new features and changes to fix the language, it became more acceptable to
make other changes that were not quite as critical.

It Is Still Visual Basic
Despite the changes, programmers will still recognize the Visual Basic they
know and love. Let’s now look at what changes you will expect to see moving
to Visual Basic .NET.

Expect Subtle Differences
Visual Basic .NET has been rebuilt for the .NET platform. What does this state-
ment mean? It means that the product has been rewritten from the ground up.
One of the side effects of rewriting Visual Basic is that any similarities with pre-
vious versions of the language had to be added intentionally—you don’t get
them for free, as you do when you simply add new features to an existing code
base. A programming language is composed of a million subtle nuances: the
behavior of the Format function, the order of events on a form, and the
undocumented hacks that are possible, like subclassing a form’s message
loop. Some of these subtleties are not exactly the same in Visual Basic .NET,
and after upgrading an application, you may find small differences in the way
the application works.

A good example is the Currency data type. In Visual Basic 6, the Currency
data type has 4 digits of precision. In Visual Basic .NET, the Currency data type
is renamed Decimal and has 12 digits of precision. If you run the following line
of code in Visual Basic 6:

MsgBox(CCur(10/3))

it produces 3.3333. If you run the equivalent line of code in Visual Basic .NET,

MsgBox(CDec(10 / 3))

the result is 3.333333333333. This is not a huge change, but it underlies a prin-
ciple of upgrading: Visual Basic .NET is subtly different from Visual Basic 6, and

Reading 1 Visual Basic .NET Is More Than Visual Basic 6 + 1 9

therefore upgraded applications will be different from their Visual Basic 6 coun-
terparts in subtle ways. In most cases you will not notice the difference, yet it’s
important to be aware of the changes and to test your applications thoroughly
after upgrading them. Now, let’s turn our attention to upgrading.

The Decision to Break Compatibility
When did Microsoft decide to break compatibility with Visual Basic 6? It
was actually in early December 1999, during the development of Visual
Basic .NET. Until that time, Visual Basic .NET was being developed to sup-
port the notion of “Visual Basic 6 sourced” projects that allowed you to
edit and compile Visual Basic 6 projects in Visual Basic .NET. These
projects would have a compatibility switch turned on, meaning that the
language would be backward compatible with Visual Basic 6 and would
even have access to the old Visual Basic 6 forms package.

By the end of 1999, it was obvious that this strategy wasn’t working.
Little differences were slipping through: The old forms package could not
be fully integrated into .NET, and the Visual Basic 6 sourced projects could
not use some of the new features of the .NET platform. At that point
Microsoft made the decision to break compatibility and instead concen-
trate on ensuring that people could upgrade their projects from Visual
Basic 6 to Visual Basic .NET.

Plan for a 95 Percent Automated Upgrade
The effect of the changes and subtle differences in Visual Basic .NET is that,
unlike previous versions of Visual Basic, most real-world projects cannot be
upgraded 100 percent automatically. To understand why, consider that for a 100
percent upgrade there has to be a one-to-one correlation between every ele-
ment of Visual Basic 6 and a corresponding element in Visual Basic .NET.
Unfortunately, this correlation does not exist. The upgrade process is closer to
95 percent, meaning that the Visual Basic .NET Upgrade Wizard upgrades 95
percent of your application, and you modify 5 percent of the application to get
it working. What does 5 percent mean? If it took you 100 days to write the origi-
nal Visual Basic 6 application, you might expect to take 5 days to upgrade it. This

10 Destination Visual Basic .NET

number is not set in stone—some applications are easier to upgrade than oth-
ers, and the experience of the person doing the upgrade is an important factor.

 Once you’ve gotten your application working, Visual Basic .NET has a
bunch of exciting new features that you can use to add value to your applica-
tion straight away. We encourage you to think of the upgrade as occurring in
three steps:

1. Use the Upgrade Wizard to bring your application into Visual Basic
.NET.

2. Make the modifications to get your application working.

3. Start adding value with the great new features of Visual Basic .NET.

Why Should I Upgrade?
If it requires work to upgrade your applications from Visual Basic 6 to Visual
Basic .NET, you may wonder, “Is upgrading worth the trouble? Why should I
bother to upgrade an application that requires modifications when it works in
Visual Basic 6 today?” The main reason for upgrading is to take advantage of
the new features of Visual Basic .NET. What are these new features? Listing
them all would be a book in itself. The following sections discuss some of the
features that people commonly add to their upgraded applications.

New Language Features
Visual Basic .NET adds a number of new language features that make the lan-
guage more powerful and will forever dispel the myth that Visual Basic is a
“toy” programming language.

Inheritance
For years we developers had been asking Microsoft to add “real” inheritance to
Visual Basic. Sure, Visual Basic 6 supports interface inheritance, but we wanted
more; we wanted implementation inheritance. We wanted to benefit from code
reuse and to truly implement object-oriented designs. Visual Basic .NET fully
supports inheritance, via the new Inherits keyword. You can inherit classes
from within your own application, from other applications, and from .NET com-
ponents written in other languages. You can even use inheritance in forms to
inherit the layout, controls, and code of another form. This is called visual
inheritance. The following code illustrates the use of the Inherits keyword:

Public Class BaseClass
End Class

Reading 1 Visual Basic .NET Is More Than Visual Basic 6 + 1 11

Public Class InheritedClass : Inherits BaseClass
End Class

Interfaces in Code
Along with “real” inheritance, Visual Basic .NET still supports interface inherit-
ance and improves on it by providing the Interface keyword. The Interface
keyword defines the interfaces in code. Your classes then implement the inter-
faces, as in the following example:

Interface myInterface
 Function myFunction()

End Interface
Public Class myImplementedClass

 Implements myInterface
 Function myFunction() _
 Implements myInterface.myFunction

 'Some Code
 End Function

End Class

Structured Exception Handling
In addition to supporting the familiar On...Error...GoTo error catching, Visual
Basic .NET provides a Try...Catch...End Try exception-handling block that adds
error handling. This construct allows you to embed code within an error-handling
block. A great use for this type of block is to create a global error handler for your
application by including a Try…Catch block in the startup object such as Sub
Main. In the following example, Sub Main opens a new instance of Form1 and
will catch and report any errors that are thrown anywhere in the application:

Sub Main()
 Try

 Windows.Forms.Application.Run(_
 New Form1())
 Catch ex As Exception

 MsgBox(ex.Message)
 End Try

End Sub

Arithmetic Operator Shortcuts
All arithmetic operators in Visual Basic .NET now have shortcuts that let you oper-
ate on and assign the result back to a variable. For example, in Visual Basic 6, you
might write

Dim myString As String
myString = myString & "SomeText"

12 Destination Visual Basic .NET

In Visual Basic .NET, you can write this in a much more elegant format:

Dim myString As String

myString &= "SomeText"

These expression shortcuts apply to &=, *=, +=, -=, /=, \=, and ^=. Note
that you can also use the old Visual Basic 6–style expressions.

Overloaded Functions
Visual Basic .NET introduces function overloading. With overloading, you can
declare multiple functions with the same name, each accepting a different num-
ber of parameters or accepting parameters of different types. For example, sup-
pose that you have a method that deletes a customer from a database. You
might want to create two versions of the deleteCustomer method, one to delete
a customer based on ID and one to delete a customer by name. You can do so
in Visual Basic .NET as follows:

Sub deleteCustomer(ByVal custName As String)

 'Code that accepts a String parameter

End Sub
Sub deleteCustomer(ByVal custID As Integer)

 'Code that accepts an Integer parameter
End Sub

Attributes
Visual Basic .NET also now includes attributes. Attributes give one the ability to
fine-tune how an application behaves. They modify the behavior of code ele-
ments and can be applied to methods, classes, interfaces, and the application
itself. You can use attributes to explicitly declare the GUID for a class or to
define how a variable should be marshaled when it is passed to a COM object.
Suppose, for example, that you have written a common utility function that you
want the debugger always to step over, rather than step into. The DebuggerHid-
den attribute allows you to do this:

<DebuggerHidden()> _
Function nToz(ByVal input) As Integer

If Not IsNumeric(input) Then input = 0
Return Input

End Function

Reading 1 Visual Basic .NET Is More Than Visual Basic 6 + 1 13

Multithreading
By default, your Visual Basic .NET applications are single threaded, but the lan-
guage has new keywords that allow you to spawn new threads. This ability can
be very useful if you have processes that take a long time to complete and that
can run in the background. The following example creates a new thread and
uses it to run the subroutine loadResultsFromDatabase:

Sub Main()

 Dim myThread As New Threading.Thread(_

 AddressOf loadResultsFromDatabase)
 mythread.Start()

End Sub
Sub loadResultsFromDatabase()

 'Some Code
End Sub

Reduced Programming Errors
Visual Basic .NET helps you reduce programming errors by supporting stronger
type checking. For example, if you use the wrong enum value for a property or
you assign a variable type to an incompatible type, the compiler will detect and
report it at design time. With ADO.NET, you can add strongly typed datasets to
your application, and if you refer to an invalid field name, it will be picked up
as a compile error instead of a run-time error. These features allow you to catch
errors as you write your program. For the ultimate in strong type checking, you
can use Option Strict On in your application, which prohibits late binding and
ensures that you use conversion functions whenever you assign a variable from
one type to another. This feature can be useful in applications that don’t use
late binding, but it enforces a stricter and more verbose coding standard than
many developers are used to.

The .NET Framework
In addition to the familiar VBA library of functions, such as Left$, Right$,
Command$, and the Win32 APIs, Visual Basic .NET has access to the .NET
Framework, which is designed specifically for Visual Basic, C#, and the other
.NET languages. The .NET Framework is a collection of more than 3800 classes
and 28,000 methods for forms, graphics, XML, Internet development, file
access, transactions, and almost everything else you can think of. The set of
.NET classes you will most likely become familiar with first is the new forms
package—Windows Forms—which looks a lot like the familiar Visual Basic 6
forms package but which is implemented as a set of .NET classes available to all
languages. The next section describes the features of this package.

14 Destination Visual Basic .NET

❇❇❇

Data Types Are Upgraded to Fit
The storage size for Visual Basic intrinsic types such as Integer and Long has
changed in Visual Basic .NET. In Visual Basic 6 an Integer is 16 bits and a Long
is 32 bits. In Visual Basic .NET an Integer is 32 bits and a Long is 64 bits. Most
of the time it doesn’t matter whether you use an Integer instead of a Long. If
you have a loop index that goes from 0 to 10, you can nitpick over the perfor-
mance implications of using one size or another, but generally it makes no dif-
ference. The program works the same way.

Sometimes, however, the size difference matters. For example, if you’re
calling Windows API functions that require a 32-bit integer argument, you had
better use a Declare statement that declares the argument as 32 bits.

To keep your application running smoothly after upgrade, the Upgrade
Wizard declares all of your numeric types to use the correct Visual Basic .NET
equivalent based on size. This means that an Integer variable is upgraded to
Short. A variable of type Long is upgraded to type Integer. In the case of the
Variant type, the Upgrade Wizard maps to the closest equivalent type found in
Visual Basic .NET: Object. Table 7-4 gives a mapping of types between Visual
Basic 6 and Visual Basic .NET. The table provides mappings where the name of
the type is different between Visual Basic 6 and Visual Basic .NET. All other
types, such as Byte, Single, Double, and String, map as is.

❇❇❇

Table 7-4 Mapping of Types Between Visual Basic 6 and Visual
Basic .NET

Visual Basic 6 Type Upgrades to Visual Basic .NET Type

Integer Short

Long Integer

Variant Object

Currency Decimal

From Updating Microsoft Visual Basic 6.0 to Microsoft Visual Basic .NET by Ed Robinson, Mike Bond, and
Ian Oliver. pp. 143-144. (Redmond: Microsoft Press. 2002.) Copyright © 2002 by Microsoft Corporation.

Reading 1 Visual Basic .NET Is More Than Visual Basic 6 + 1 15

Windows Forms
Windows Forms is a new forms development system that replaces the old
Visual Basic forms. Along with features that make it powerful and easy to use,
Windows Forms is available to all Visual Studio .NET languages.

Faster Development
Windows Forms in Visual Basic .NET has several features that speed up devel-
opment. An in-place menu editor and visual editing of tab orders make form
design easier. Control anchoring allows you to remove all your old resizing
code and instead visually anchor the controls so that they remain a fixed length
from the edge of the form and resize whenever the form resizes. Visual inher-
itance allows you to inherit the controls, properties, layout, and code of a base
form. A good use for this feature is to define a standard form layout for an
application, with a standard size, header, footer, and close button. You can then
inherit all forms from this standard form.

GDI+
GDI+ allows you to add rich visual effects to your application. For example, to
make a form semitransparent, you would place the following line of code in the
form load event:

Me.Opacity = 0.5

Figure 1-1 shows the effects of visual inheritance and GDI+ semitranspar-
ency in a Windows application.

F01km01

Figure 1-1 Visual inheritance and GDI+ semitransparency.

16 Destination Visual Basic .NET

Internationalization
Windows Forms has built-in support for internationalization. To add support for
other languages, you set the Localizable property of the form to True, set the
Language property to the desired language, and then change the Font and Size
properties of the form and controls. Every change that you make is saved as
specific to the current locale. For example, you can have different-sized con-
trols with different text for both Spanish and English.

New Web Development Features
Visual Basic .NET offers many enhancements to Web development. Two of the
most significant involve XML and Web Forms.

Better Support for XML
Visual Basic .NET has designers that allow visual editing of HTML documents,
XML documents, and XML schemas. In addition, there are .NET Framework
classes that support serializing and deserializing any .NET class to and from
XML. Visual Basic .NET can create XML Web services that use HTTP to pass
XML backward and forward to other applications. If your application uses XML,
Visual Basic .NET has great support for it. If you’re looking to add XML support
to your application (or to learn how to use XML), Visual Basic .NET is a great
tool for doing so.

Web Services and Web Forms
Visual Basic .NET allows you to add Web services to your application. As you
will see later in this book, in many cases you can actually convert your business
objects to Web services. You can also easily add a Web Forms presentation layer
that leverages your Visual Basic 6 or upgraded business objects. Visual Basic
.NET makes Web development as easy as Windows development.

Better Development Environment
Along with language, form, and Web development enhancements, the IDE in
Visual Basic .NET has a number of new features.

Cross-Language Interoperability
Visual Basic .NET is designed for cross-language interoperability. Because .NET
unifies types, controls and components written in one language can easily be
used in another. Anyone who has struggled to get a Visual Basic 6 user control
to work in a Visual C++ project will immediately recognize the benefits of this.
You can inherit from a class written in any other language built on the .NET
platform or create components in other languages that inherit from your Visual
Basic classes. Visual Studio .NET provides a single environment for developing

Reading 1 Visual Basic .NET Is More Than Visual Basic 6 + 1 17

and compiling multilanguage applications. Using the unified debugger, you can
step from a component written in one language into another written in a differ-
ent language. You can also debug COM+ services and step into SQL Server
stored procedures.

Background Compiler and Task List
Visual Basic .NET has a compiler that continually works in the background. Com-
pilation errors are flagged in code in real time with blue squiggle underlines. The
Task List updates in real time with the list of compilation errors, and it also shows
any ToDo comments you add to your code. ToDo comments are a great way to
keep track of what you still need to do. For example, if you add a button to a
form, and plan to finish the click code later, you can add a comment like

 'TODO: Finish the code later

and the statement appears in the Task List. You can filter the Task List by task
type and even choose what sort of comments are shown using the Task List
pane. Figure 1-2 shows the Visual Basic .NET Task List.

F01km02

Figure 1-2 ToDo comments in the Task List.

Is Visual Basic Still the Best Choice for Visual Basic Developers?
If you are faced with learning the new features of Visual Basic .NET, you may
ask yourself, “Why should I stick with Visual Basic? Why don’t I choose another
language instead? Why not move to C# (a new language in Visual Studio .NET

18 Destination Visual Basic .NET

derived from C++)?” Although the choice is yours, we should point out that
Visual Basic .NET is now as powerful as C#, Visual C++, or any other language.
All the .NET languages have access to the same .NET Framework classes. These
classes are powerful, and they allow Visual Basic .NET to smash through the
“glass ceiling” of previous versions.

Visual Basic .NET also keeps the spirit of Visual Basic alive. It is designed
by Visual Basic developers for Visual Basic developers, whereas a language like
C# is designed for C developers. Each language has some unique features that
are not available in other languages. Let’s compare C# with Visual Basic to see
what makes each language unique.

Features Found in C# but Not in Visual Basic .NET
The C# language supports pointers. Pointers allow you to write “unsafe” code
that modifies memory locations directly. The following code shows how to use
pointers in C#:

unsafe static void Main(string[] args)
{

 int myInt = 5;
 int * myptr = & myInt;
 * myptr = 55;
 Console.WriteLine(myInt.ToString());

}

Although Visual Basic .NET doesn’t support pointers in the language itself,
you can still access memory locations using methods of the .NET Garbage Col-
lector class. C# also supports document comments that allow you to embed
self-documenting comments in your source code. These comments are com-
piled into the metadata of the component and can be extracted and built into
help files.

Features Found in Visual Basic .NET but Not in C#
Visual Basic .NET’s most appealing feature is the human-readable Visual Basic
language, which is case insensitive with great IntelliSense. If you declare a vari-
able as MyVariable and then later change the case to myVariable, Visual Basic
.NET automatically changes the case of all occurrences in the code. C# and
Visual C++ don’t do this. In fact, C# treats MYVariable and myVariable as two
separate variables. Most Visual Basic programmers have grown to know and
become comfortable with case-insensitive behavior and will find Visual Basic
.NET the most natural language to use.

Visual Basic .NET also supports late binding and optional parameters. C#
supports neither of these. In addition, Visual Basic supports automatic coer-
cions between types. For example, in C#, you cannot assign a Long to an Inte-
ger without using a conversion method (since it may cause an overflow). Visual

Reading 1 Visual Basic .NET Is More Than Visual Basic 6 + 1 19

Basic allows narrowing conversions like this one, since in most cases overflows
don’t occur. If you want to prevent automatic coercions, you can use a new
compiler option, Option Strict On, that enforces C-like strict type coercion.

Visual Basic has richer IntelliSense and better automatic formatting than
any other language. It automatically indents code, corrects casing, and adds
parentheses to functions when you press Enter.

The result is a true Visual Basic experience, enhanced by background
compilation as you type. For example, if you misspell the keyword Function, as
in

Funtion myFunction

as soon as you move off the line, the compiler parses it and puts a compiler
error in the Task List. It also underlines the word “Funtion” with a blue squiggle
indicating the location of the compile error. As soon as you correct the line, the
compiler removes the Task List item and erases the underline. Background
compilation helps you write better code and is unique to Visual Basic—no
other language has a background compiler.

The language you use is a matter of choice. However, if you enjoy pro-
gramming in Visual Basic, you will find Visual Basic .NET a great experience
and the best upgrade ever.

Conclusion

Whew—it’s time to breathe. We’ve covered a lot of ground in this chapter. First
we established that Visual Basic .NET is not 100 percent backward compatible
with Visual Basic 6. We then took a lightning tour of the history of Visual Basic
and saw that, although it is redesigned and restructured, Visual Basic .NET is
part of the natural progression of Visual Basic. We looked at some of the differ-
ences between Visual Basic 6 and Visual Basic .NET and discussed some of the
new features you can add to your upgraded applications. We also covered how
you can add value to your upgraded applications and why you should continue
to use Visual Basic.

The next reading takes a deeper look at what the .NET platform is and
outlines the significant differences in Visual Basic .NET. Later chapters go fur-
ther into the upgrading options and describe what you can do to prepare your
application for the upgrade to Visual Basic .NET. Welcome to Visual Basic .NET,
the future of Visual Basic.

21

Reading 2
Visual Basic 6 and Visual
Basic .NET: Differences

More than three years ago, the Microsoft Visual Basic team set out to create
Visual Basic .NET. At that time managers would kid the development team by
saying that they were making only three “simple” changes to Visual Basic 6: a
new runtime system, a new development environment, and a new compiler.
The Visual Basic development team spent the next three years working on one
of these changes: the new compiler. Two other teams provided the develop-
ment environment and runtime. As we pointed out in earlier, the end result is
not a new version of Visual Basic 6 but an entirely new product: Microsoft
Visual Basic .NET. The name is important for two reasons. First, Visual Basic is
still Visual Basic. Second, Visual Basic .NET is not Visual Basic 7.

This chapter describes the three “simple” changes made to create Visual
Basic .NET, including changes to the runtime, the development environment,
and the compiler. Microsoft also added other features to Visual Basic .NET
along the way, including a new forms package and a new debugger, and these
are also discussed in this chapter.

.NET Framework vs. ActiveX
As a Visual Basic developer, you will normally not be concerned with the run-
time systems that underlie your Visual Basic applications. Visual Basic 6, for
example, makes the details of how ActiveX works largely transparent. The

From Updating Microsoft Visual Basic 6.0 to Microsoft Visual Basic .NET by Ed Robinson, Mike Bond, and
Ian Oliver. pp. 19-43. (Redmond: Microsoft Press. 2002.) Copyright © 2002 by Microsoft Corporation.

22 Destination Visual Basic .NET

Visual Basic 6 runtime handles all of the messy details that come with imple-
menting an ActiveX-compliant component or application. Licensing, persistable
objects, Microsoft Transaction Server (MTS) transaction awareness, and binary
compatibility are exposed as simple settings that you can turn on or off. In the
same vein, Visual Basic .NET does a good job of hiding the details of what hap-
pens under the hood. For example, you do not need to know that you are cre-
ating or using a .NET component. A .NET component is just like any other
component. It has properties, methods, and events just as an ActiveX compo-
nent does. Why should you care about the differences between ActiveX and
.NET if everything basically looks the same?

On the surface, it doesn’t matter whether you’re using ActiveX, .NET, or your
best friend’s component model—they all look about the same. When you dig into
the details, however, you need to understand the machine that lies beneath.

If you have ever created an ActiveX control in Visual Basic 6, you may
have found that it behaves slightly differently from other ActiveX controls that
you bought off the shelf. For example, if you add a BackColor property to your
control, you’ll notice when you test it that the color picker is not associated with
your control. Digging deeper, you’ll find that you need to change the type of
the property to OLE_COLOR and set the Property ID attribute on the property to
BackColor. Only then will the property behave like a BackColor property. In
solving this problem, you needed to cross over from pure Visual Basic into the
world of ActiveX. Although Visual Basic attaches different terminology to
options and language statements, you end up being directly or indirectly
exposed to ActiveX concepts such as dispatch IDs (DISPIDs), what Visual Basic
refers to as property IDs, and OLE types such as OLE_COLOR. Visual Basic, as
much as it tries, cannot hide this from you. The more properties, events, methods,
and property pages you add to your Visual Basic 6 ActiveX control, the more
problems you encounter that require an ActiveX-related solution.

Visual Basic .NET works in much the same way. Most of the time, you are
just dealing with Visual Basic. However, when you need your application or
component to behave consistently with other types of applications, whether
they be standard Windows applications or Web service server objects, you will
need a detailed understanding of the environment in which you want your
application to run. In the case of .NET applications, you will need to under-
stand how .NET works. The more you know about the target environment, the
better equipped you are to create a component or application that behaves well
in that environment. So let’s dig a bit and uncover the machine that will run
your upgraded Visual Basic .NET application: the .NET Framework.

Reading 2 Visual Basic 6 and Visual Basic .NET: Differences 23

.NET Framework
The .NET Framework is composed of two general parts: the common language
runtime and the Framework class library. The runtime is the foundation upon
which the .NET Framework is based. It provides the basic services on which all
.NET applications depend: code execution, memory management, thread man-
agement, and code security. The Framework class library provides building
blocks for creating a variety of .NET applications, components, and services. For
example, the Framework class library contains the base classes for creating
ASP.NET Web applications, ASP.NET XML Web services, and Windows Forms. It
defines all of the value types, known as System types, such as Byte, Integer, Long,
and String. It gives you complex structure classes such as Collection and Hash-
table, as well as interfaces such as ICollection and IDictionary so you can define
your own custom implementation of a standard Collection or Hashtable class.

The .NET Framework as a whole, since it works across all .NET languages,
can be thought of as an expanded version of the Visual Basic 6 runtime. The
common language runtime corresponds to the Visual Basic Language Runtime
in Visual Basic 6, which includes the byte code interpreter and memory man-
ager. The counterparts of the .NET Framework class library in Visual Basic 6
include the Visual Basic forms package, the Collection object, and global
objects such as App, Screen, Printer, and Clipboard.

The main difference between the two environments is that Visual Basic 6
is a closed environment, meaning that none of the intrinsic Visual Basic types,
such as Collection, App, Screen, and so on, can be shared with other language
environments, such as C++. Likewise, Microsoft Visual C++ is largely a self-con-
tained language environment that includes its own runtime and class libraries,
such as MFC and ATL. The MFC CString class, for example, is contained within
the MFC runtime and is not shared with other environments such as Visual Basic.

In closed environments such as these, you can share components
between environments only when you create them as ActiveX components, and
even then there are a number of limitations. ActiveX components need to be
designed and tested to work in each target environment. For example, an
ActiveX control hosted on a Visual Basic 6 form may work wonderfully, but the
same control may not work at all when hosted on an MFC window. You then
need to add or modify the interfaces or implementation of your ActiveX com-
ponent to make it work with both the Visual Basic 6 and MFC environments. As
a result, you end up duplicating your effort by writing specialized routines to
make your ActiveX component work in all target environments.

The .NET Framework eliminates this duplication by creating an environ-
ment in which all languages have equal access to the same broad set of .NET

24 Destination Visual Basic .NET

types, base classes, and services. Each language built on the .NET Framework
shares this common base. No matter what your language of choice is—Visual
Basic .NET , C#, or COBOL (for .NET)—the compiler for that language gener-
ates exactly the same set of .NET runtime instructions, called Microsoft Interme-
diate Language (MSIL). With each language distilled down to one base
instruction set (MSIL), running against the same runtime (the .NET common lan-
guage runtime), and using one set of .NET Framework classes, sharing and con-
sistency become the norm. The .NET components you create using any .NET
language work together seamlessly without any additional effort on your part.

Now that you have seen some of the differences between the Visual
Basic 6 ActiveX-based environment and the Visual Basic .NET environment,
let’s focus on various elements of the .NET Framework and see how each ele-
ment manifests itself in Visual Basic .NET. The elements we will be looking at
are memory management, type identity, and the threading model. Each of these
areas will have a profound impact on the way you both create new Visual Basic
.NET applications and revise upgraded Visual Basic 6 applications to work with
Visual Basic .NET.

Memory Management
Visual Basic .NET relies on the .NET runtime for memory management. This
means that the .NET runtime takes care of reserving memory for all Visual Basic
strings, arrays, structures, and objects. Likewise, the .NET runtime decides when
to free the memory associated with the objects or variables you have allocated.
This is not much different from Visual Basic 6, which was also responsible for
managing the memory on your behalf. The most significant difference between
Visual Basic 6 and Visual Basic .NET in terms of memory management involves
determining when an object or variable is freed.

In Visual Basic 6, the memory associated with a variable or object is freed
as soon as you set the variable to Nothing or the variable falls out of scope. This
is not true in Visual Basic .NET. When a variable or object is set to Nothing or
falls out of scope, Visual Basic .NET tells the .NET runtime that the variable or
object is no longer used. The .NET runtime marks the variable or object as
needing deletion and relegates the object to the Garbage Collector (GC). The
Garbage Collector then deletes the object at some arbitrary time in the future.

Because we can predict when Visual Basic 6 will delete the memory asso-
ciated with a variable, we refer to the lifespan of a variable in that language as
being deterministic. In other words, you know the exact moment that a vari-
able comes into existence and the exact moment that it becomes nonexistent.
The lifespan of a Visual Basic .NET variable, on the other hand, is indetermin-
istic, since you cannot predict exactly when it will become nonexistent. You
can tell Visual Basic .NET to stop using the variable, but you cannot tell it when

Reading 2 Visual Basic 6 and Visual Basic .NET: Differences 25

to make the variable nonexistent. The variable could be left dangling for a few
nanoseconds, or it could take minutes for the .NET Framework to decide to
make it nonexistent. In the meantime, an indeterminate amount of your Visual
Basic code will execute.

In many cases it does not matter whether or not you can predict when a
variable or object is going to be nonexistent. For example, a simple variable
such as a string or an array that you are no longer using can be cleaned up at
any time. It is when you are dealing with objects that things get interesting.

Take, for example, a File object that opens a file and locks the file when
the File object is created. The object closes the file handle and allows the file to
be opened by other applications when the object is destroyed. Consider the fol-
lowing Visual Basic .NET code:

Dim f As New File
Dim FileContents As String
f.Open(“MyFile.dat”)
FileContents = f.Read(“MyFile.dat”)
f = Nothing
FileContents = FileContents & “ This better be appended to my file! “
f.Open(“MyFile.dat”)
f.Write(FileContents)
f = Nothing

If you run this application in Visual Basic 6, it will run without error. How-
ever, if you run this application in Visual Basic .NET, you will encounter an
exception when you attempt to open the file the second time. Why? The file
handle associated with MyFile.dat will likely still be open. Setting f to Nothing
tells the .NET Framework that the File object needs to be deleted. The runtime
relegates the object to the garbage bin, where it will wait until the Garbage Col-
lector comes along to clean it up. The File object in effect remains alive and
well in the garbage bin. As a result, the MyFile.dat file handle is still open, and
the second attempt to open the locked file will lead to an error.

The only way to prevent this type of problem is to call a method on the
object to force its handle to be closed. In this example, if the File object had a
Close method, you could use it here before setting the variable to Nothing. For
example,

f.Close

f = Nothing

Dispose: Determinism in the Face of Chaos
Despite all of the benefits that a garbage-collected model has to offer, it has one
haunting side effect: the lack of determinism. Objects can be allocated and
deleted by the hundreds, but you never really know when or in what order

26 Destination Visual Basic .NET

they will actually terminate. Nor do you know what resources are being con-
sumed or locked at any given moment. It’s confusing, even chaotic. To add
some semblance of order to this system, the .NET Framework offers a mecha-
nism called Dispose to ensure that an object releases all its resources exactly
when you want it to. Any object that locks resources you need or that otherwise
needs to be told to let go should implement the IDisposable interface. The IDispos-
able interface has a single method, Dispose, that takes no parameters. Any client
using the object should call the Dispose method when it is finished with the object.

One More Thing to Worry About
If you’ve been using Visual Basic 6, you’re not accustomed to calling Dispose
explicitly on an object when you write code. Unfortunately, when it comes to
Visual Basic .NET, you will have to get accustomed to doing so. Get in the habit
now of calling Dispose on any object when you are done using it or when the
variable referencing it is about to go out of scope. If we change the File object
shown earlier to use Dispose, we end up with the following code:

Dim f As New File
Dim FileContents As String
f.Open(“MyFile.dat”)
FileContents = f.Read(“MyFile.dat”)
f.Dispose
f = Nothing
FileContents = FileContents & “ This better be appended to my file! “
f.Open(“MyFile.dat”)
f.Write(FileContents)
f.Dispose
f = Nothing

Note The Visual Basic Upgrade Wizard does not alert you to cases
in which you may need to call Dispose. We advise you to review your
code after you upgrade to determine when an object reference is no
longer used. Add calls to the object’s Dispose method to force the
object to release its resources. If the object—notably ActiveX objects
that do not implement IDisposable—does not support the Dispose
method, look for another suitable method to call, such as Close. For
example, review your code for the use of ActiveX Data Objects (ADO)
such as Recordset and Connection. When you are finished with a
Recordset object, be sure to call Close.

Reading 2 Visual Basic 6 and Visual Basic .NET: Differences 27

When You Just Want It All to Go Away
While your application runs, objects that have been created and destroyed may
wait for the Garbage Collector to come and take them away. At certain points
in your application, you may need to ensure that no objects are hanging
around locking or consuming a needed resource. To clean up objects that are
pending collection, you can call on the Garbage Collector to collect all of the
waiting objects immediately. You can force garbage collection with the follow-
ing two calls:

GC.Collect

GC.WaitForPendingFinalizers

Note The two calls to Collect and to WaitForPendingFinalizers are
required in the order shown above. The first call to Collect kicks off the
garbage collection process asynchronously and immediately returns.
The call to WaitForPendingFinalizers waits for the collection process to
complete.

Depending on how many (or few) objects need to be collected, running
the Garbage Collector in this manner may not be efficient. Force garbage col-
lection sparingly and only in cases where it’s critical that all recently freed
objects get collected. Otherwise, opt for using Dispose or Close on individual
objects to free up needed resources as you go.

Type Identity
Mike once played on a volleyball team where everyone on his side of the net,
including himself, was named Mike. What a disaster. All the other team had to
do was hit the ball somewhere in the middle. Someone would yell, “Get it,
Mike!” and they would all go crashing into a big pile. To sort things out, they
adopted nicknames, involving some derivation of their full names. After that,
the game went much better.

Like names in the real world, types in Visual Basic can have the same
name. Instead of giving them nicknames, however, you distinguish them by
using their full name. For example, Visual Basic has offered a variety of data
access models over the years. Many of these data access models contain objects
with the same names. Data Access Objects (DAO) and ActiveX Data Objects
(ADO), for instance, both contain types called Connection and Recordset.

28 Destination Visual Basic .NET

Suppose that, for whatever reason, you decided to reference both DAO and
ADO in your Visual Basic 6 project. If you declared a Recordset variable, the
variable would be either a DAO or an ADO Recordset type:

Dim rs As Recordset

How do you know which type of Recordset you are using? One way to tell
is to look at the properties, methods, and events that IntelliSense or the event
drop-down menu gives you. If the object has an Open method, it is an ADO
Recordset. If instead it has an OpenRecordset method, it is a DAO Recordset.
In Visual Basic 6, the Recordset you end up with depends on the order of the
references. The reference that appears higher in the list wins. In Figure 2-1, for
example, the Microsoft ActiveX Data Objects 2.6 Library reference occurs
before the reference to the Microsoft DAO 3.6 Object Library, so ADO wins and
the Recordset is an ADO Recordset type.

F01km01

Figure 2-1 ADO 2.6 reference takes precedence over DAO 3.6.

If you change the priority of the ADO reference by selecting it and click-
ing the down arrow under Priority, the DAO reference will take precedence.
Clicking OK to apply the change transforms your Recordset type to a DAO
Recordset.

Suppose you want to use both types of Recordset objects in your applica-
tion. To do so, you need to fully qualify the type name as follows:

Dim rsADO As ADODB.Recordset
Dim rsDAO As DAO.Recordset

As you can see, Visual Basic 6 is quite flexible when it comes to using types.
Indeed, you could argue that it is too flexible, since you could mistakenly change
the type for variables in your code simply by changing the order of a reference.

Reading 2 Visual Basic 6 and Visual Basic .NET: Differences 29

Visual Basic .NET is stricter about the use of the same types in an applica-
tion. The general rule is that you need to fully qualify every ambiguous type
that you are using. If you are referencing both ADO and DAO, for example, you
are forced to fully qualify your use of the types just as you would in Visual Basic 6:

Dim rsADO As ADODB.Recordset

Dim rsDAO As DAO.Recordset

Using Imports
To help you cut down on the number of words and dots that you need to type
for each reference, Visual Basic .NET allows you to import a namespace. You
can think of it as a global With statement that is applied to the namespace. (A
namespace is similar to a library or project name in Visual Basic 6.) For exam-
ple, type references can become quite bothersome when you are dealing with
.NET types such as System.Runtime.Interopservices.UnmanagedType. To sim-
plify the qualification of this type, you can add an Imports statement to the
beginning of the file in which it is used:

Imports System.Runtime

This statement allows you to reference the type as Interopservices.Unman-
agedType. You can also expand the Imports clause to

Imports System.Runtime.Interopservices.

and then simply refer to Unmanaged Type in your code.

Managing Conflicts
Imports works great until there is a conflict. As we indicated earlier, in Visual
Basic 6, the rule is that the type library that is higher in the precedence list takes
priority. Visual Basic .NET is different in that all conflicts are irreconcilable. You
have to either change your Imports clause to avoid the conflict or fully qualify

each type when it is used. Suppose that you add Imports statements for ADO

and DAO as follows:

Imports ADO
Imports DAO

Now suppose that you want to declare a variable of type Recordset. As in the
volleyball game described earlier, it’s as if you yelled out, “Recordset!” Both
ADO and DAO jump in. Crash! Big pile. Any attempt to use the unqualified type
Recordset will lead to an error that states, “The name ‘Recordset’ is ambiguous,
imported from Namespace ADO, DAO.” To resolve the problem, you need to
either fully qualify the type or remove one of the Imports statements.

30 Destination Visual Basic .NET

No More GUIDs
Each ActiveX type, whether it is a class, an interface, an enumerator, or a struc-
ture, generally has a unique identifier associated with it. The identifier is a 128-
bit, or 16-byte, numeric value referred to as UUID, GUID, LIBID, CLSID, IID, or
<whatever>ID. No matter what you call it, it is a 128-bit number.

Rather than make you think in 128-bit numbers, Visual Basic (and other
languages) associates human-readable names with each of these types. For
example, if you create a Visual Basic 6 class called Customer, its type identifier
will be something like {456EC035-17C9-433c-B5F2-9F22C29D775D}. You can
assign Customer to other types, such as LoyalCustomer, if LoyalCustomer imple-
ments the Customer type with the same ID value. If the LoyalCustomer type
instead implements a Customer type with a different ID value, the assignment
would fail with a “Type Mismatch” error. In ActiveX, at run time, the number is
everything; the name means little to nothing.

In .NET, on the other hand, the name is everything. Two types are consid-
ered the same if they meet all of the following conditions:

■ The types have the same name.

■ The types are contained in the same namespace.

■ The types are contained in assemblies with the same name.

■ The assemblies containing the types are weak named.

Note that the types can be in assemblies that have the same name but a
different version number. For example, two types called Recordset contained in
the namespace ADODB are considered the same type if they live in an assem-
bly such as Microsoft.ADODB.dll with the same name. There could be two
Microsoft.ADODB.dll assemblies on your machine with different version num-
bers, but the ADODB.Recordset types would still be considered compatible. If,
however, the Recordset types lived in different assemblies, such as
Microsoft.ADODB_2_6.dll and Microsoft.ADODB_2_7.dll, the types would be
considered different. You cannot assign two variables of type Recordset to
each other if each declaration of Recordset comes from an assembly with a
different name.

Threading Model
Visual Basic 6 ActiveX DLLs and controls can be either single threaded or apart-
ment threaded; they are apartment threaded by default. Apartment threading
means that only one thread can access an instance of your Visual Basic 6

Reading 2 Visual Basic 6 and Visual Basic .NET: Differences 31

ActiveX component at any given time. In fact, the same thread always accesses
your component, so other threads never disturb your data, including global
data. Visual Basic .NET components, on the other hand, are multithreaded by
default, meaning that two or more threads can be executing code within your
component simultaneously. Each thread has access to your shared data, such
as class member and global variables, and the threads can change any data
that is shared.

Visual Basic .NET multithreaded components are great news if you want
to take advantage of MTS pooling, which requires multithreaded components.
They are bad news if your component is not multithread safe and you wind up
trying to figure out why member variables are being set to unexpected or ran-
dom values in your upgraded component.

Differences in the Development Environment
Although Visual Basic 6 shipped as part of Microsoft Visual Studio 6, it did not
share a common infrastructure with its siblings C++, Visual InterDev, and Visual
FoxPro. The only sharing came in the form of ActiveX components and in
designers such as the DataEnvironment. Although Visual Studio 6 shipped with
a common integrated development environment (IDE) called MSDev, Visual
Basic 6 did not participate in MSDev and instead came with its own IDE called
VB6.exe.

Visual Studio .NET ships with a single IDE that all languages built on the
.NET Framework share called Devenv.exe. The Visual Studio .NET IDE is a host
for common elements such as the Windows and Web Forms packages, the
Property Browser, Solution Explorer (also known as the project system), Server
Explorer, Toolbox, Build Manager, add-ins, and wizards. All languages, includ-
ing Visual Basic .NET and C#, share these common elements.

Although the Visual Studio .NET IDE provides a common environment for
different languages, the various languages are not identical or redundant. Each
language maintains its own identity in the syntax, expressions, attributes, and
runtime functions you use. When you write code behind a form in a common
forms package such as Windows Forms or Web Forms, the code behind the
form is represented by the language you are using. If you use Visual Basic, the
events for the form are represented using Visual Basic syntax and have event
signatures almost identical to those you are accustomed to using in Visual Basic
6. If you use C#, all of the Windows Forms event signatures appear in the syn-
tax of the C# language.

32 Destination Visual Basic .NET

What happened to the common tools that you have grown to love or hate
in Visual Basic 6? They have all been rewritten for Visual Studio. NET, as you’ll
see next.

Menu Editor
Do you really want to keep using the same clunky Menu Editor that has been
around since Visual Basic 1, shown in Figure 2-2? We doubt it. So you’ll probably
be pleased to know that you won’t find it in the Visual Studio .NET environment.
Instead, you create menus by inserting and editing the menu items directly on
a Windows form.

F01km02

Figure 2-2 Visual Basic 6 Menu Editor.

To insert a new menu in the .NET environment, you drag a MainMenu
component from the Toolbox and drop it on the form. Then you select the
MainMenu1 component in the component tray, below the form, and type your
menu text in the edit box that says “Type Here” just below the title bar for your
form. Figure 2-3 shows the Visual Basic .NET menu editor in action.

Reading 2 Visual Basic 6 and Visual Basic .NET: Differences 33

F01km03

Figure 2-3 Visual Basic .NET’s in-place menu editor.

Toolbox
The Visual Studio .NET Toolbox is similar to the Visual Basic 6 Toolbox in
appearance and use. A difference you will notice right away is that the Visual
Studio .NET Toolbox contains the name of each Toolbox item in addition to the
icon. Also, depending on the type of project selected, the Toolbox displays a
variety of tabs containing different categories of controls and components that
you can add to a form or designer. For example, when you are editing a Win-
dows Forms project, the Toolbox will contain categories titled Data, Compo-
nents Windows Forms, Clipboard Ring, and General. Each tab contains ADO
.NET data components such as DataSet and OleDBAdaptor; system components
such as MessageQueue and EventLog; and Windows Forms controls and compo-
nents such as Button, TextBox, Label, and TreeView.

A subtle difference between the Visual Basic 6 Toolbox and the Visual
Basic .NET Toolbox relates to references. In Visual Basic 6, any ActiveX control
you add to the Toolbox is also added as a reference within your project. The
reference exists whether you use the ActiveX control on a form or not. In Visual
Basic .NET, the items you add to the Toolbox are not referenced by default. It
is not until you place the control on a Windows form or designer that a refer-
ence to that component is added to your project.

34 Destination Visual Basic .NET

Because a reference to an ActiveX control automatically exists when you
place the control on the Toolbox in Visual Basic 6, you can use the reference in
code. For example, suppose you add the Masked Edit ActiveX control to the
Toolbox but don’t add an instance of the control to the form. You can write code
to add an instance of the Masked Edit ActiveX control to a form at runtime,
as follows:

Dim MyMSMaskCtl1 As MSMask.MaskEdBox
Set MyMSMaskCtl1 = Controls.Add(“MSMask.MaskEdBox", “MyMSMaskCtl1”)
MyMSMaskCtl1.Visible = True

If you attempt to place a Masked Edit ActiveX control on a Visual Basic
.NET Toolbar, you will find that if you declare a variable of the ActiveX control
type, the statement will not compile. For example, if you attempt to declare the
Masked Edit control, using Visual Basic .NET equivalent syntax, the statement
won’t compile, as follows:

Dim MyMSMaskCtl1 As AxMSMask.AxMaskEdBox

To declare a variable of the ActiveX control type, you need to place the ActiveX
control on a form. You will then be able to dimension variables of the
ActiveX control type.

Note After you place an ActiveX control on a Visual Basic .NET
form, you will find that you can declare variables of the control type.
However, you will not be able to use Controls.Add, as demonstrated in
the Visual Basic 6 code above. Controls.Add is not supported in Visual
Basic .NET.

Property Browser
The Visual Studio .NET Property Browser is, for the most part, identical in terms
of appearance and use to the Visual Basic 6 Property Browser. One minor dif-
ference is that the default view for the Property Browser in Visual Studio .NET
is Category view, meaning that related properties are grouped under a descrip-
tive category. Alphabetical view is also supported. The Visual Basic 6 Property
Browser, on the other hand, defaults to listing properties alphabetically,
although it supports a categorized view.

The Visual Studio .NET Property Browser can list all of the properties
associated with a control or component. This is not the case when you are
using the Visual Basic 6 Property Browser. For example, the Visual Basic 6

Reading 2 Visual Basic 6 and Visual Basic .NET: Differences 35

Property Browser cannot list object or variant-based properties. It can display
properties for a limited number of objects, such as Picture or Font, but it cannot
represent an object property such as the ColumnHeaders collection of a List-
View control. Instead the Visual Basic 6 Property Browser relies on an ActiveX
control property page to provide editing for object properties such as collections.

The Visual Studio .NET Property Browser allows direct editing of an object
property if a custom editor is associated with the property or the property type.
For example, the Visual Studio .NET Property Browser provides a standard Col-
lection Editor for any property that implements ICollection. In the case of the
ColumnHeaders collection for a ListView control, a ColumnHeader Collection
Editor, based on the standard Collection Editor, is provided for you to edit the
ColumnHeaders collection for the ListView. Figure 2-4 shows an example of
editing the ListView Columns property.

F01km04

Figure 2-4 Visual Basic .NET ColumnHeader Collection Editor in action.

Tab Layout Editor
Your days of clicking a control, setting the TabIndex property, and then repeat-
ing the process for the several dozen controls on your form are over. Welcome
to the Visual Studio .NET Tab Layout Editor. The Tab Layout Editor allows you to
view and edit the tab ordering for all elements on the form at once. To view your
tab layout for the current form, select Tab Order from the View menu. A tab index
number displays for each control on the form. You can start with the control that
you want to be first in the tab order, and then click the remaining controls in the

36 Destination Visual Basic .NET

tab order that you want. The tab index numbers will correspond to the order in
which you click the controls. Figure 2-5 illustrates the Tab Layout Editor.

F01km05

Figure 2-5 Visual Studio .NET Tab Layout Editor in action.

Forms Packages
The forms package that you use in Visual Basic 6 to create standard .exe
projects or ActiveX control projects is essentially the same package that has
been in existence since Visual Basic 1. Visual Basic .NET offers a brand new
forms package called Windows Forms. In addition, Visual Basic .NET gives
you a second forms package to help in creating Web applications: the Web
Forms package.

A Single Standard for Windows Forms
A significant difference between Visual Basic .NET and Visual Basic 6 is that the
forms you use with Visual Basic .NET can be used in any type of .NET project.
For example, you can use the same forms with both a Visual Basic application
and a C# application.

Reading 2 Visual Basic 6 and Visual Basic .NET: Differences 37

The forms package found in Visual Basic 6 is local to that environment.
You can use Visual Basic 6 forms only in Visual Basic 6. Microsoft has tried in
the past to create a single, standard forms package that could be shared across
multiple products such as Visual Basic, C++, and Microsoft Office. The initiative,
called Forms3 (pronounced Forms Cubed), never realized this goal. Forms3 is
alive and well in Office but was never made fully compatible with the Visual
Basic forms package.

The Windows Forms package reignites some hope of having a single
forms standard applied across various Microsoft products—at least for client
applications based on the .NET platform. The ideal of having a single, universal
forms package, however, will have to wait; Visual Studio .NET also introduces
a separate forms package for Web applications.

Two Forms Packages for the Price of One
One of the appealing features of Visual Studio .NET is that you can create a
Web application more quickly and easily than you ever have before. This ease
stems from the marriage between the Web Forms package and Visual Basic
.NET. For the first time, you can create a Web application in the same manner
that you create a Windows client application. You drag and drop controls onto
a Web form and then write code to handle the form and control events. All of
the skills that you use to create Visual Basic Windows applications can now be
used to create Web applications.

Note The Upgrade Wizard will upgrade your client-based applica-
tions to use Windows Forms and will upgrade your WebClasses-
based applications to use Web Forms.

Language Differences
With each new version of Visual Basic, Microsoft has expanded the language by
offering new keywords, new syntactical elements, new conditional statements
or modifiers, new attributes, and so on. Visual Basic .NET is no exception. It
makes the same types of additions to the language as previous versions have,
but on a much grander scale than before. Table 2-1 gives a complete list of key-
words that have been added to the Visual Basic .NET language.

38 Destination Visual Basic .NET

Table 2-1 New Keywords in Visual Basic .NET

Visual Basic .NET Keyword Description

AddHandler and RemoveHandler Dynamically adds or removes event handlers
at runtime, respectively

AndAlso and OrElse Short-circuited logical expressions that com-
plement And and Or, respectively

Ansi, Auto, and Unicode Declare statement attributes

CChar, CObj, CShort, CType, and DirectCast Coercion functions

Class, Interface, Module, and Structure Type declaration statements

Default Attribute for indexed property declarations

Delegate Declare pointer to instance method or shared
method

GetType Returns Type class for a given type

Handles Specifies event handled by a subroutine

Imports Includes given namespace in current code
file

Inherits Optional statement used with a class to
declare classes that inherit from another class

MustInherit Optional statement used with a class to
declare the class as an abstract base class

MustOverride Optional subroutine attribute that specifies an
inherited class must implement the subroutine

MyBase Refers to base class instance

MyClass Refers to the current class instance. Ignores a
derived class.

Namespace Defines a namespace block

NotInheritable Optional statement used with Class to indi-
cate the class cannot be inherited

NotOverridable Optional subroutine attribute which specifies
that a subroutine cannot be overridden in a
derived class

Option Strict Allows you to turn strict type conversion
checking on or off. Default is off.

Overloads Optional subroutine attribute that indicates
the subroutine overloads a subroutine with
the same name, but different parameters

Overridable Optional subroutine attribute which specifies
that a subroutine can be overridden in a
derived class

Reading 2 Visual Basic 6 and Visual Basic .NET: Differences 39

Because the Upgrade Wizard generally does not modify or update your
code to take advantage of new Visual Basic .NET features, only a subset of the
new features come into play after an upgrade. Therefore, we will focus here on
some of the general language differences that affect your upgraded Visual Basic
6 application.

All Subroutine Calls Must Have Parentheses
Parentheses are required on all subroutine calls. If you write code that does not
use the Call keyword, as follows:

MsgBox “Hello World”

you are required to use parentheses in your Visual Basic .NET code, as follows:

MsgBox(“Hello World”)

Overrides Optional subroutine attribute that indicates
the subroutine overrides a subroutine in the
base class

Protected Class member attribute that limits member
access to the class and any derived class

Protected Friend Same as Protected, but expands the scope to
include access by any other class in the same
assembly

ReadOnly and WriteOnly Attribute on a Property declaration to specify
the property is read-only or write-only

Return* Statement used to return, possibly with a
value from a subroutine

Shadows Attribute on class members to specify that a
class member is distinct from a same-named
base class member

Short 16-bit type known as Integer in Visual Basic 6

SyncLock Specifies the start of a thread synchronization
block

Try, Catch, Finally, and When Keywords related to structured error handling

Throw Keyword to throw an exception

* Existing keyword with different behavior.

Table 2-1 New Keywords in Visual Basic .NET (continued)

Visual Basic .NET Keyword Description

40 Destination Visual Basic .NET

ByVal or ByRef Is Required
In Visual Basic .NET, all subroutine parameters must be qualified with ByVal or
ByRef. For example, instead of this Visual Basic 6 code:

Sub UpdateCustomerInfo(CustomerName As String)
End Sub

you will see the following Visual Basic .NET code:

Sub UpdateCustomerInfo(ByRef CustomerName As String)

End Sub

In this case, an unqualified Visual Basic 6 parameter has been upgraded to
use the ByRef calling convention. In Visual Basic .NET, the default calling con-
vention is ByRef.

Is That My Event?
Visual Basic 6 associates events by name, using the pattern <Object-
Name>_<EventName>. For example, the click event associated with a com-
mand CommandButton is

Private Sub Command1_Click()

If you change the name of the Visual Basic 6 event to the name of a sub-
routine that does not match any other event, it becomes a simple subroutine.
The name pattern, therefore, determines whether a subroutine is an event or not.

Handles Clause
Visual Basic .NET does not associate events by name. Instead, a subroutine is
associated with an event if it includes the Handles clause. The name of the sub-
routine can be any name you want. The event that fires the subroutine is given
in the Handles clause. For example, the click event associated with a Visual
Basic .NET button has the following signature:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles Button1.Click

Because the event hookup is an explicit part of the event declaration, you can
use unique names for your events. For example, you can change the name of
your Button1_Click event to YouClickedMyButton as follows:

Reading 2 Visual Basic 6 and Visual Basic .NET: Differences 41

Private Sub YouClickedMyButton(ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles Button1.Click

Event Parameters
Another interesting change related to events is that event parameters are differ-
ent between Visual Basic 6 and Visual Basic .NET. In Visual Basic 6, the event
subroutine contains the name and type of each parameter. In Visual Basic .NET,
the parameters are bundled up in an EventArgs object and passed in as a refer-
ence to that object. Also, the event subroutine for a Visual Basic .NET event
includes a reference to the object that fired the event.

As an example of the different handling of event parameters in the two
versions of Visual Basic, consider a form with a Listbox control on it, for which
you need to write code to show the checked item.

In Visual Basic 6, you would write the following code:

Private Sub List1_ItemCheck(Item As Integer)
MsgBox “You checked item: “ & Item

End Sub

The equivalent code in Visual Basic .NET is as follows:

Private Sub CheckedListBox1_ItemCheck(ByVal sender As Object, _
ByVal e As System.Windows.Forms.ItemCheckEventArgs) _
Handles CheckedListBox1.ItemCheck
MsgBox(“You checked item: “ & e.Index)

End Sub

Observe how the item that is checked is passed directly as a parameter in Visual
Basic 6. In Visual Basic .NET, it is passed as a member of the passed-in Item-
CheckEventArgs object e.

Arrays Must Have a Zero-Bound Lower Dimension
You cannot declare an array in Visual Basic .NET to have a nonzero-bound
lower dimension. This requirement also means that you cannot use Option Base 1.
In fact, you cannot specify a lower dimension in an array declaration, since it must
always be zero. The following types of declarations are no longer supported:

Dim MyIntArray(-10 To 10) As Integer ‘21 elements
Dim MyStringArray(1 To 100) As String ‘100 elements

Option Base 1
Dim MyOptionBase1Array(5) As Long ‘5 elements (1-5)

42 Destination Visual Basic .NET

Instead, you must use zero-based lower bound arrays, and you need to adjust
the bounds to create an array with the same number of elements, such as

Dim MyIntArray(20) As Integer ‘21 elements (0-20)
Dim MyStringArray(99) As String ‘100 elements (0-99)

‘Option Base 1 ‘Not supported by VB .NET

Dim MyOptionBase1Array(4) As Long ‘5 elements (0-4)

Fixed-Length Strings Are Not Supported
Visual Basic .NET does not support fixed-length strings. For example, the fol-
lowing type of declaration is not supported:

Dim MyString As String * 32

Instead, you can dimension the string as a fixed-length array of characters,
as follows:

Dim MyString(32) As Char

Or you can use a special class, VBFixedLengthString, defined in the Visual
Basic .NET compatibility library. If you use the VBFixedLengthString class the
declaration will be:

Imports VB6 = Microsoft.VisualBasic.Compatibility.VB6
…

Dim MyFixedLenString As New VB6.FixedLengthString(32)

To set the value of a FixedLengthString variable you need to use the Value
property as follows:

MyFixedLenString.Value = “This is my fixed length string”

Variant Data Type Is Eliminated
Visual Basic .NET eliminates the Variant data type. The main reason is that the
underlying .NET Framework does not natively support the Variant type or any-
thing like it. The closest approximation that the .NET Framework offers is the
Object type. The Object type works somewhat like the Variant type because
the Object type is the base type for all other types, such as Integer and String.
Just as you can with a Variant, you can assign any type to an Object. How-
ever, in Visual Basic .NET, to get a strong type back out of a Variant to assign, for
example, to an Integer or a String, you need to use a type-casting function, such
as CInt or CString. With Visual Basic 6, you can write code such as the following:

Reading 2 Visual Basic 6 and Visual Basic .NET: Differences 43

Dim v As Variant
Dim s As String
v = “My variant contains a string"
s = v

When using Visual Basic .NET, however, you need to use type conversion
functions such as CStr, as follows:

Dim v As Variant
Dim s As String
v = “My variant contains a string"
s = CStr(v)

Visibility of Variables Declared in Nested Scopes Is Limited
Variables that are declared in a nested scope, such as those occurring within an
If…Then or For…Next block, are automatically moved to the beginning of the
function. The Upgrade Wizard does this for compatibility reasons. In Visual
Basic 6, a variable declared in any subscope is visible to the entire function. In
Visual Basic .NET, this is not the case. A variable declared within a subscope is
visible only within that subscope and any scope nested beneath it.

Take, for example, the following Visual Basic code:

Dim OuterScope As Long

If OuterScope = False Then
Dim InnerScope As Long

End If

InnerScope = 3

This code works fine in Visual Basic 6, but it will lead to a compiler error in
Visual Basic .NET. The compiler error will occur on the last line, InnerScope =
3, and will indicate that the name InnerScope is not declared.

Note The Upgrade Wizard will upgrade your code so that no com-
piler error occurs. It does this by moving the declaration for Inner-
Scope to the top of the function along with all other top-level
declarations. Moving the variable declaration to the top-level scope
allows the variable to be used from any scope within the function. This
move makes the behavior compatible with Visual Basic 6. It is one of
the few cases in which the Upgrade Wizard changes the order of code
during upgrade.

44 Destination Visual Basic .NET

Changes in the Debugger
Visual Basic .NET shares the same debugger with all .NET languages in Visual
Studio .NET. This debugger works much the same as the one in Visual Basic 6
in that you can step through code and set breakpoints in the same way. How-
ever, there are some differences that you should be aware of. These are dis-
cussed in the following sections.

No Edit and Continue
What percentage of your Visual Basic 6 application would you say is developed
when you are debugging your application in what is commonly referred to as
break mode? Ten percent? Forty percent? Ninety percent? Whatever your
answer, the number is likely above zero. Any problems you encounter while
debugging your Visual Basic 6 application are quite easy to fix while in break
mode. This is a great feature that allows you to create applications more
quickly. You will miss this ability in Visual Basic .NET.

The Visual Studio .NET common debugger does not allow you to edit your
code while in break mode. Any time you encounter code that you want to
change or fix, you need to stop debugging, make the change, and then start the
application again. Doing so can be a real pain.

The Visual Basic .NET team recognizes that this is not what you would call
a RAD debugging experience. The team hopes to offer an updated debugger
that supports edit and continue in a future release of Visual Studio .NET. Until
then, prepare to break, stop, edit, and rerun your application.

Cannot Continue After an Error
If an error or exception occurs while you are running your application, the
Visual Basic .NET debugger will stop at the point where the exception
occurred. However, unlike Visual Basic 6, in the Visual Basic .NET debugger
you cannot fix your code or step around the code that is causing the error. If
you attempt to step to another line, the application will terminate and switch to
Design view. You will need to determine the source of the exception, fix your
code, and then rerun the application.

Reading 2 Visual Basic 6 and Visual Basic .NET: Differences 45

No Repainting in Break Mode
In Visual Basic 6, the form and all controls on it continue to display even when
you are in break mode. This happens because the Visual Basic 6 debugger lets
certain events occur and allows certain code to execute when you are in break
mode. For example, painting is allowed to occur.

When debugging your application using Visual Basic .NET, you will find
that your form does not repaint. In fact, if you place another window over it
while you are in break mode, you will find that the form image does not update
at all. The Visual Basic .NET debugger does not allow any events or code to run
while you are in break mode.

One benefit of the Visual Basic .NET debugger is that you can debug your
paint code and watch your form update as each statement that paints the form
executes. It allows you to pinpoint the exact statement in your code that is
causing a problem with the display. Because the Visual Basic 6 debugger allows
the form to repaint constantly, it is difficult to pinpoint painting problems using
the Visual Basic 6 debugger.

❇❇❇

The .NET Framework Class Library
The .NET Framework class library is a collection of classes that managed appli-
cations use to access the operating system, the file system, databases, and any
other resource. In this section, let’s look at the most interesting portions of the
.NET class library.

To better organize the hundreds of classes in the library, the .NET Frame-
work supports the concept of namespaces. Namespaces are similar to directo-
ries on disk: just as a directory can contain files and other directories, a
namespace can contain classes and other (nested) namespaces. For example,
all the classes that have to do with database programming are grouped in the
System.Data namespace. The System namespace is arguably the most important
namespace because all the basic types are defined there, including numeric,
data, and string types.

Tthe most interesting namespaces in are summarized Table 2-2, sorted in
alphabetical order. Note that a namespace can be split into more DLLs; in fact,
the logical organization of the types in an assembly is distinct from its physical
organization. For example, you can put types that are used less frequently into
a separate DLL so that they aren’t loaded if they aren’t used.

From Programming Microsoft Visual Basic .NET by Francesco Balena. pp. 41-45, 115-118. (Redmond:
Microsoft Press. 2002.) Copyright © 2002 by Francesco Balena.

46 Destination Visual Basic .NET

Table 2-2 The Most Important Namespaces in the .NET Framework

Namespace DLL Name Sample Classes Description

System MSCorLib.dll Double, String,
Array, Exception,
Math

The core .NET
classes and all the
basic data types

System.
CodeDom

System.dll CodeExpression,
CodeNamespace

Types for program-
matically creating
code

System.
Collections

MSCorLib.dll ArrayList, Hash-
table, SortedList,
BitArray

Collectionlike data
types

System.
Component-
Model

System.dll Component,
PropertyDescriptor

Types for control-
ling components

System.
Component-
Model.Design

System.dll and
System.
Design.dll

DesignerCollection,
DesignerVerb

Types for imple-
menting design-
time features of
components

System.Data System.
Data.dll

DataSet, DataTable,
DataRow

Types for client-
side processing of
database data

System.
Data.OleDb

System.
Data.dll

OleDbConnection,
OleDbCommand

Types for working
with OLE DB data-
bases

System.
Data.SqlClient

System.
Data.dll

SqlConnection,
SqlCommand

Types for working
with SQL Server
databases

System.
Diagnostics

MSCorLib.dll
and System.dll

Debug, EventLog Types for aiding
testing and
debugging

System.
Directory-
Services

System.
DirectorySer-
vices.dll

DirectoryEntry,
SearchResult

Types for working
with Active
Directory

System.
Drawing

System.
Drawing.dll

Brush, Pen, Font Types for creating
graphics in
Windows Forms
applications

System.
Drawing.
Drawing2D

System.
Drawing.dll

HatchBrush, Matrix Additional types for
more sophisticated
2-D graphics

Reading 2 Visual Basic 6 and Visual Basic .NET: Differences 47

System.
Drawing.
Imaging

System.
Drawing.dll

BitmapData,
Metafile

Types for working
with image files

System.
Drawing.
Printing

System.
Drawing.dll

PageSettings,
PrintController

Types for output-
ting to a printer
device

System.
Drawing.Text

System.
Drawing.dll

FontCollection,
InstalledFont-
Collection

Types for enumer-
ating and installing
fonts

System.Glo-
balization

MSCorLib.dll CultureInfo,
Calendar

Types for authoring
multi-language
applications

System.IO MSCorLib.dll Path, File, Stream,
FileStream,
StreamReader

Types that provide
access to files’
attributes and
contents

System.
Messaging

System.
Messaging.dll

Message,
MessageQueue

Types for working
with Microsoft Mes-
sage Queue Server
(MSMQ)

System.Net System.dll HttpWebRequest,
Dns, WebResponse

Types for sending
HTTP Web requests

System.
Net.Sockets

System.dll Socket, UdpClient Types for working
with sockets

System.
Reflection

MSCorLib.dll Assembly, Property-
Info, MethodInfo

Types for reflect-
ing over existing
assemblies and
types

System.
Reflection.
Emit

MSCorLib.dll AssemblyBuilder,
MethodBuilder

Types for program-
matically creating
new assemblies

System.
Resources

MSCorLib.dll ResourceReader,
ResourceWriter

Types for working
with resource files

System.
Runtime.
Interop-
Services

MSCorLib.dll Marshal,
COMException

Types for working
with unmanaged
COM components

Table 2-2 The Most Important Namespaces in the .NET Framework (continued)

Namespace DLL Name Sample Classes Description

(continued)

48 Destination Visual Basic .NET

System.
Runtime.
Remoting

MSCorLib.dll ObjHandle,
SoapServices

Types for enabling
remote execution

System.
Runtime.
Serialization.
Formatters.
Binary

MSCorLib.dll BinaryFormatter Type for serializa-
tion in binary
format

System.
Runtime.
Serialization.
Formatters.
Soap

System.
Runtime.
Serialization.
Formatters.
Soap.dll

SoapFormatter Type for serializa-
tion in SOAP
format

System.
Security

MSCorLib.dll PermissionSet, Code-
AccessPermission

Types for security
support

System.
Security.
Cryptography

MSCorLib.dll DES, RSA Types for crypto-
graphic services

System.
Security.
Permissions

MSCorLib.dll FileIOPermission,
RegistryPermission

Types for querying
for security permis-
sions

System.
ServiceProcess

System.
ServicePro-
cess.dll

ServiceController,
ServiceBase

Types for creating
and controlling
Windows services

System.
Text.Regular-
Expressions

System.dll Regex, Match Types for working
with regular
expressions

System.
Threading

MSCorLib.dll
and System.dll

Thread, Monitor,
ThreadPool

Types for control-
ling multithreading
capabilities

System.Timers System.dll Timer Timer class for
server-side applica-
tions

System.Web System.
Web.dll

HttpApplication,
HttpCookie

Types for working
with generic HTTP
applications

Table 2-2 The Most Important Namespaces in the .NET Framework (continued)

Namespace DLL Name Sample Classes Description

Reading 2 Visual Basic 6 and Visual Basic .NET: Differences 49

System.
Web.UI

System.
Web.dll

Page, DataBinding Basic types for
working with
ASP.NET applica-
tions

System.
Web.UI.
HtmlControls

System.
Web.dll

HtmlButton,
HtmlTable

ASP.NET controls
that parallel old-
style HTML con-
trols

System.
Web.UI.
WebControls

System.
Web.dll

Button, CheckBox,
Table

ASP.NET controls
with rich user-
interface capabili-
ties

System.
Web.Services

System.
Web.
Services.dll

WebService, Web-
MethodAttribute

Types for creating
XML Web services

System.
Web.Services.
Protocols

System.
Web.
Services.dll

SoapHeader,
SoapExtension

Types for low-level
work with Web
Services

System.
Windows.
Forms

System.
Windows.
Forms.dll

Form, TextBox,
ListBox

Types for creating
Windows Forms
applications

System.Xml System.Xml.dll XmlDataDocument,
XmlNode

Types for working
with XML docu-
ments

System.
Xml.Schema

System.Xml.dll XmlSchema,
XmlSchemaElement

Types for working
with XML schemas

System.
Xml.XPath

System.Xml.dll XPathDocument,
XPathExpression

Types for working
with XML XPath
queries

System.
Xml.Xsl

System.Xml.dll XslTransform,
XslContent

Types for working
with XSL transfor-
mations

Table 2-2 The Most Important Namespaces in the .NET Framework (continued)

Namespace DLL Name Sample Classes Description

50 Destination Visual Basic .NET

❇❇❇

Structures
The Type...End Type block isn’t supported in Visual Basic .NET and has been
replaced by the Structure...End Structure block, which offers many additional
features and is actually more similar to classes than to the old user-defined
types (or UDTs) allowed in previous language versions. You can have a struc-
ture at the namespace level, inside a Class or Module block, or even inside
another structure.

Members inside a structure must be prefixed with an accessibility (visibil-
ity) qualifier, as in this code:

Structure PersonStruct
Dim FirstName As String ’ Dim means Public here.
Dim LastName As String
Public Address As String
Private SSN As String

End Structure

The declaration of the structure’s data members can neither include initial-
izers nor use the As New declaration syntax. As comments in the preceding
example suggest, the default accessibility level for structures—that is, the visibility
level implied by a Dim keyword—is Public (unlike classes, where the default
level is Private). Visual Basic .NET unifies the syntax of classes and structures, and
structures support most of the functionality of classes, including methods:

Structure PersonStruct
Dim FirstName As String
Dim LastName As String
Public Address As String
Private SSN As String

Function CompleteName() As String
CompleteName = FirstName & “ “ & LastName

End Function
End Structure

Like classes, structures can also embed properties. Unlike classes, how-
ever, structures are value types rather than reference types. Among other things,
this means that Visual Basic .NET automatically initializes a structure when you
declare a variable of that type; in other words, this line:

Dim p As PersonStruct

Reading 2 Visual Basic 6 and Visual Basic .NET: Differences 51

is equivalent to one of the following statements:

Dim p As PersonStruct = New PersonStruct() ’ Verbose initializer
Dim p As New PersonStruct ’ Shortened syntax

Each structure implicitly defines a parameterless constructor, which initial-
izes each member of the structure to its default value (0 for numeric members,
null string for String members, and Nothing for object members). It’s illegal to
define an explicit parameterless constructor or a destructor for the structure. But
you can define a New constructor method with arguments, as follows:

Structure PersonStruct
Dim FirstName As String
Dim LastName As String
Public Address As String
Private SSN As String

’ A constructor for this structure
Sub New(ByVal FirstName As String, ByVal LastName As String)

’ Note how you can use the Me keyword.
Me.FirstName = FirstName
Me.LastName = LastName

End Function
§

End Structure

The constructor method is especially important because it lets you initialize the
structure’s members correctly. That you manage this task is vital, for example,
when the structure contains fixed-length strings or, more precisely, their closest
approximation under the .NET Framework:

‘ A structure with a fixed-length string

Structure PersonStruct
Dim FirstName As String
Dim LastName As String
’ Simulate a fixed-length string.
Dim ZipCode As Microsoft.VisualBasic.Compatibility.VB6.FixedLengthString

Sub New(ByVal firstName As String, ByVal lastName As String)
Me.FirstName = firstName
Me.LastName = lastName
’ Initialize the fixed-length string.
ZipCode = New _

Microsoft.VisualBasic.Compatibility.VB6.FixedLengthString(10)
End Sub

’ ...(The remainder of the code as in preceding code snippet)...
§

End Structure

52 Destination Visual Basic .NET

That said, consider fixed-length strings your last resort because it’s far prefera-
ble to convert them to regular strings when you’re porting an application from
previous versions of the language.

A consequence of the value type nature of Structure variables is that the
actual data is copied when you assign a structure variable to another variable,
whereas only a pointer to data is copied when you assign a reference value to
a variable. Also note that the equality operator isn’t supported for structures.
This code summarizes the differences between classes and structures:

‘ This code assumes you have a PersonClass class, with the same structure
‘ as the PersonStruct structure.

Sub TestCompareStructuresAndClasses()
’ Creation is similar, but structures don’t require New.
Dim aPersonObject As New Person()
Dim aPersonStruct As PersonStruct ’ New is optional.

’ Assignment to members is identical.
aPersonObject.FirstName = “Joe"
aPersonObject.LastName = “Doe"
aPersonStruct.FirstName = “Joe"
aPersonStruct.LastName = “Doe"

’ Method and property invocation is also identical.
Console.WriteLine(aPersonObject.CompleteName()) ’ => Joe Doe
Console.WriteLine(aPersonStruct.CompleteName()) ’ => Joe Doe

’ Assignment to a variable of the same type has different effects.

Dim aPersonObject2 As Person = aPersonObject
’ Classes are reference types; hence, the new variable receives
’ a pointer to the original object.
aPersonObject2.FirstName = “Ann"
’ The original object has been affected.
Console.WriteLine(aPersonObject.FirstName) ’ => Ann
’
Dim aPersonStruct2 As PersonStruct = aPersonStruct
’ Structures are value types; hence, the new variable receives
’ a copy of the original structure.
aPersonStruct2.FirstName = “Ann"
’ The original structure hasn’t been affected.
Console.WriteLine(aPersonStruct.FirstName) ’ => Joe

End Sub

A few other features of classes aren’t supported by structures in Visual
Basic .NET. For example, structures implicitly inherit all the methods of the
Object class, but they can’t explicitly inherit from another structure, nor can they
be inherited from.

53

Reading 3

Exception Handling
The grandest of intentions and the most thorough planning can’t eliminate
errors in code. Errors can be programmer errors (usually caused by bad
assumptions, such as that a denominator will never be 0) or environmental
errors (such as an attempt to save a file that is too large for the amount of free
space on a disk). You should strive for error-free code, but you should also cre-
ate every procedure with the assumption that an error might occur. This means
that every procedure must contain an error handler.

There are practically an infinite number of possible program errors, but
they basically fall into two types: compile (build) errors and run-time errors
(called exceptions). A build error is an error that prevents Microsoft Visual
Basic’s compiler from compiling the code; Visual Basic won’t execute a proce-
dure that has a compile error in it, and you can’t distribute a run-time version
of an application that has a compile error. Most compile errors are a result of
erroneous syntax.

For example, if you attempt to call a procedure defined as

Public Sub MyProcedure(ByVal intMyVariable As Integer)

by using the statement below, a compile error occurs because of the added
argument in the Call statement.

Call MyProcedure(intVariable1, intVariable2)

Run-time errors occur while a program is running and are usually the
result of trying to perform an invalid operation on a variable. For instance, the
following code doesn’t generate a compile error.

From Practical Standards for Microsoft Visual Basic .NET by James Foxall. pp. 179-199. (Redmond:
Microsoft Press. 2003.) Copyright © 2003 by James Foxall.

54 Destination Visual Basic .NET

Dim intNumerator As Integer
Dim intDenominator As Integer
Dim intResult As Integer

‘ Modify variables here
§

intResult = intNumerator / intDenominator

Under most circumstances, this code won’t even generate a run-time
error. However, if the value of intDenominator is 0, Visual Basic throws an
exception because the result of 10 divided by 0 (which Visual Basic treats as
infinity) can’t be placed into an Integer. If a run-time error occurs when you
run a project in the integrated development environment (IDE), code execu-
tion stops at the offending line and an error message appears. In a compiled
program, an unhandled exception is fatal, causing the entire application to
crash to the desktop (without calling any necessary clean-up code, I might
add). You can prevent execution from stopping when run-time exceptions
occur by creating exception handlers.

The Exception Object
Before you can write effective exception-handling code, you must understand
Visual Basic .NET’s Exception class. Objects derived from the Exception class
contain information about an exception that has occurred. The properties of an
Exception object are populated when an exception is encountered at run time
or when you deliberately throw an exception using the Throw statement. Table
3-1 lists the most useful properties of the Exception object.

Table 3-1 Useful Properties of the Exception Object

Property Description

Source The name of the application that caused the exception.
Source is most useful when catching exceptions thrown by
other components.

Message A string describing the exception.

StackTrace A string representation of the frames on the call stack at the
time the exception was thrown.

TargetSite A string describing the method that caused the exception.

Reading 3 Exception Handling 55

Types of Exception Handlers
When you run a project as a compiled program or component, untrapped
exceptions are fatal—they cause your program to terminate. You must make
every effort to prevent this from happening. To prevent exceptions from stop-
ping code execution (and terminating compiled programs), you create excep-
tion handlers to trap the exceptions. When an exception is trapped, Visual Basic
doesn’t display an error message or terminate the application. Instead, code
that you’ve written to specifically handle the exception is executed.

Note In previous editions of Visual Basic, error handlers were cre-
ated using On Error statements. This method of handling errors was
considered an unstructured approach. Although Visual Basic .NET still
supports this method, it has been replaced with the new structured
exception-handling construct Try…Catch…Finally. It might not make
sense to attempt to convert all of the error handlers of existing code to
use Try…Catch…Finally (although you can choose to do so), but you
should use the new structured exception-handling mechanism for all
new code. I do not discuss On Error in this book because it is consid-
ered an outdated methodology.

Microsoft Knowledge Base article Q301283 states, “A try-catch-finally
block is a ‘wrapper’ that you put around any code where the possibility of an
exception exists.” This statement is misleading. Every single statement you write
has a “possibility” of encountering an error. Therefore, all procedures should
have an exception handler, regardless of the amount of code they contain.

It’s best to place a Try statement as the first line of code, immediately after
the procedure header and just after the variable declarations. If your variable
declarations use other variables as initializers (for example, Dim intMyVariable
As Integer = intAnotherVariable + 2), you should place these declarations within
the Try structure. Be aware that exceptions can “bubble up” the call stack to
exception handlers in procedures higher in the stack (as I’ll discuss later in this
chapter). If a procedure’s exceptions are allowed to bubble up in this manner,
you should clearly explain this behavior in a prominent comment at the top of
the procedure.

56 Destination Visual Basic .NET

Important Variables declared within the Try block of an exception
handler have block scope—they aren’t available to any Catch or Finally
blocks, and they aren’t available outside of the Try…End Try construct.
For this reason, it’s best to leave declarations outside of the Try block
unless the declaration has an inherent risk of throwing an exception.

You can create multiple exception handlers in a procedure by nesting
Try…Catch…Finally blocks, but no more than one exception handler is active
at a time. Visual Basic treats the handler identified by the most recent Try
statement (discussed in the next section) as the enabled exception handler. It’s
often advantageous to switch exception handlers at different points within a
procedure, as I’ll also discuss in this chapter.

Writing an Exception Handler by Using Try...Catch...Finally
Exception handlers allow you to determine how an exception is treated, rather
than rely on Visual Basic’s default behavior, which is to display the exception
and terminate the application. As I mentioned earlier, Visual Basic .NET sup-
ports structured exception handling in the form of a Try...Catch...Finally struc-
ture. This structure has the following syntax—see Table 3-2 for a description of
each component.

Try
’ Statements to try.

Catch [exception As type] [When expression]
’ Statements to run when an exception is thrown.

Finally
’ Statements to run when execution leaves any other block in the
’ structure, such as Try or Catch. These statements run regardless
’ of whether an exception occurred.

End Try

Reading 3 Exception Handling 57

Consider the following code:

Try
Debug.WriteLine(“Try”)

Catch
Debug.WriteLine(“Catch”)

Finally
Debug.WriteLine(“Finally”)

End Try

Debug.WriteLine(“Done Trying”)

If you were to run this code, here’s what would happen:

1. The Try block would begin, and code within the Try section would
execute.

2. The code contains no errors, so no exception would be thrown.
Therefore, the code within the Catch section wouldn’t execute.

3. When all statements within the Try section finished executing, the
code within the Finally section would execute.

4. When all statements within the Finally section finished executing,
execution would jump to the statement immediately following End
Try statement.

The following would print to the Output window:

Try
Finally
Done Trying

Table 3-2 Components of the Try...Catch…Finally Structure

Part Description

Try The Try section is where you place code that might cause an excep-
tion (i.e., all code other than exception-handling code). You can
place all of a procedure’s code within the Try section or just a few
lines.

Catch Code within the Catch section executes only when an exception
occurs. This is where you place code to deal with an exception.

Finally Code within the Finally section occurs when the code within the Try
section and/or code within the Catch section completes. This section
is where you place your “cleanup” code—code that you want always
executed regardless of whether an exception occurs.

58 Destination Visual Basic .NET

Now consider this code:

Dim intNumerator As Integer = 10
Dim intDenominator As Integer = 0
Dim intResult As Integer

Try
Debug.WriteLine(“Try”)
intResult = intNumerator / intDenominator

Catch
Debug.WriteLine(“Catch”)

Finally
Debug.WriteLine(“Finally”)

End Try

Debug.WriteLine(“Done Trying”)

If you were to run this code, the following would be printed to the Output
window:

Try
Catch
Finally
Done Trying

Notice that this time the code within the Catch section would execute.
This happens because the statement that sets intResult causes an Overflow
exception. Had this statement not been placed in within a Try block, Visual
Basic would have raised the exception and an error dialog box would have
appeared. However, because the statement is placed within the Try block, the
exception would be “caught.” This means that when the exception occurs,
Visual Basic directs execution to the Catch section. Notice also how the code
within the Finally section executes after the code within the Catch section.
Remember, code within the Finally section always executes, regardless of
whether an exception occurs.

Catching Exceptions
The Catch section is where you deal with an exception. Technically, you don’t
have to include a Catch section, but leaving it out is a very bad idea! Ignoring
an exception (by not including a Catch section) is worse than not including
exception trapping to begin with because exceptions will occur and neither you
nor your customers will know about them.

Reading 3 Exception Handling 59

Important You should always include a Catch section to deal with
exceptions.

Dealing with Exceptions
Catching exceptions so that they don’t crash your application is a noble thing to
do, but it’s only part of the exception-handling process. Usually, you’ll want to
tell the user (in a friendly way) that an exception has occurred. Not only do you
want to tell them an exception occurred, but you’ll probably also want to tell
them what type of exception occurred. To do this, you have to have a way of
knowing what exception was thrown. This is also important if you intend to
write code to deal with specific exceptions. The Catch statement allows you to
specify a variable to hold a reference to an Exception object. Using this Excep-
tion object, you can get information about the exception. Here’s the syntax
used to place the exception in an Exception object:

Catch variablename As Exception

If an exception occurs, you can manipulate the properties of the vari-
able—see Table 3-1—as you see fit. For instance, to simply inform the user of
an error, you could use code such as this:

Try
’ Try something here.

Catch ex As Exception
MessageBox.Show(“Error: “ & ex.Message, “Error!", _

MessageBoxButtons.OK, MessageBoxIcon.Exclamation)

End Try

Recall from Table 3-1 that the Message property of the Exception object
contains the text that describes the specific exception that occurs. As with other
code structures, Visual Basic has a statement that can be used to exit a Try...End
Try structure at any time: Exit Try. Note, however, that if you use Exit Try, the
Finally block will execute. When writing clean-up code in a Finally block for
an exception handler that uses Exit Try, be sure that no problems arise from the
Exit Try diverting code to the Finally block.

60 Destination Visual Basic .NET

Handling a Specific Anticipated Exception
There may be times that you’ll anticipate a specific exception being thrown. For
example, you might write code that attempts to open a file when the file might
not exist. In such an instance, you’ll probably want to perform specific actions
when the anticipated exception is thrown. When you anticipate a specific
exception, you can create a Catch section designed specifically to deal with that
one exception.

In the previous section, I showed how you could catch an exception using
a Catch statement such as Catch e As Exception. By creating a generic Exception
variable, such a Catch statement would catch any and all exceptions thrown by
statements within the Try section. To catch a specific exception, change the
data type of the exception variable to a specific exception type. For example:

Dim lngAnswer As Long
Try

lngAnswer = 100 / CLng(txtInput.Text)
MessageBox.Show("100/" & txtInput.Text & " is " & lngAnswer)

Catch objException As System.OverflowException
MessageBox.Show(“You must enter something in the text box.”)

Catch objException As Exception
MessageBox.Show(“Caught an exception that wasn’t an overflow.”)

End Try

Notice that there are two Catch statements in this structure. The first Catch
statement is designed to catch only an Overflow exception—it won’t catch
exceptions of any other type. The second Catch statement doesn’t care what
type of exception is thrown. Catch sections are evaluated from top to bottom,
much like Case statements in Select…Case structure. This means the general
Catch section shown here would never catch an Overflow exception.

You could add as many Catch sections as you need to catch other specific
exceptions. However, if you are anticipating specific exceptions, it might be
best to wrap that code in its own Try…End Try structure, like this:

Try
’ Do stuff here.

’ The following code might generate an anticipated error
Try

’ Code that might generate an anticipated error.
Catch ex As AnticipatedError

’ Code to deal with anticipated error.
Catch

’ Code to deal with an unexpected error.

Reading 3 Exception Handling 61

End Try
Catch

’ Code to deal with an unexpected error.
End Try

Important When specifying multiple Catch blocks for an exception
handler, order them from most specific to least specific. This ensures
that exceptions are handled correctly.

Exception Handlers and the Call Stack
It’s extremely important to understand how exceptions are passed up the call
stack. Although Try…Catch…Finally structures can be nested—even across pro-
cedures, as shown in the following code—only one Try block is active at any
given point in time. Consider the following two procedures:

Private Sub cmdCreateErrorHandler_Click(ByVal sender As _
System.Object, ByVal e As System.EventArgs) _
Handles cmdCreateErrorHandler.Click

’ Purpose : Create an error handler.

Try
Call TestSub()

Catch
MessageBox.Show("Error caught in Click event.")

End Try
End Sub

Private Sub TestSub()
’ Purpose : Demonstrate error handlers and the call stack.
Dim intNumerator As Integer = 100
Dim intDenominator As Integer = 0

Try
’ This next statement throws an exception.
Dim intResult As Integer = intNumerator / intDenominator

Catch
Messagebox.Show("Error caught in TestSub().")

End Try

End Sub

62 Destination Visual Basic .NET

When the cmdCreateErrorHandler button is clicked, the Try statement
creates an exception handler. When the TestSub method is invoked, its excep-
tion handler becomes enabled when its Try statement is encountered; any
exceptions encountered within the Try structure in the TestSub method (such as
the divide-by-zero error deliberately created here) are handled by the current
exception handler. When the Try…End Try structure is completed, the Try
structure of the Click event becomes active once more.

Next consider these two procedures:

Private Sub cmdCreateErrorHandler_Click(ByVal sender As _
System.Object, ByVal e As System.EventArgs) _
Handles cmdCreateErrorHandler.Click

’ Purpose : Create an error handler.

Try
Call TestSub()

Catch
MessageBox.Show("Error caught in Click event.")

End Try

End Sub

Private Sub TestSub()
’ Purpose : Demonstrate error handlers and the call stack.
Dim intNumerator As Integer = 100
Dim intDenominator As Integer = 0

’ This next statement throws an exception.
Dim intResult As Integer = intNumerator / intDenominator

End Sub

When the button is clicked, the Try statement creates an active exception
handler. When the TestSub method is invoked, code is still executing within the
Try structure of the Click event. When the exception occurs, Visual Basic looks
back through the thread of execution to determine whether the code is execut-
ing within a Try block. In this case, it would determine that the code was
indeed within a Try block, so the exception would be handled in the Click
event, as illustrated by the following two procedures:

Private Sub cmdCreateErrorHandler_Click(ByVal sender As _
System.Object, ByVal e As System.EventArgs) _
Handles cmdCreateErrorHandler.Click

’ Purpose : Create an error handler.

Try
Call TestSub()

Reading 3 Exception Handling 63

MessageBox.Show("Statement in Click event.")
Catch

MessageBox.Show("An exception has been caught!")
End Try

End Sub

Private Sub TestSub()
’ Purpose : Demonstrate error handlers and the call stack.
Dim intNumerator As Integer = 100
Dim intDenominator As Integer = 0

’ This next statement throws an exception.
Dim intResult As Integer = intNumerator / intDenominator
MessageBox.Show("Statement in TestSub() method.")

End Sub

When the Click event is fired, an exception handler is enabled by the Try
statement. When execution transfers to the TestSub procedure, the exception
handler remains enabled because no Catch, Finally, or End Try statement has
been reached. When the exception occurs, what’s printed? Because the excep-
tion isn’t part of a Try block within the same procedure, Visual Basic looks
deeper in the call stack to see whether execution is occurring within a Try block
higher up the stack. Because the code is within a Try block higher up the call
stack, the exception is handled and the following text gets printed:

An exception has been caught!

This concept is true for multiple nested procedures as well. If an excep-
tion occurs within a procedure and the code isn’t contained in a Try block,
Visual Basic looks up the call stack to see whether execution is occurring in a
Try block somewhere deeper in the stack. If the top of the call stack is reached
and code execution is found not to be running within a Try block, the excep-
tion is treated as untrapped (and rightly so). Such an error will cause a message
to be displayed to the user, and your application will crash to the desktop.

Note If an exception is encountered in a Catch block, one of two
things happened. If an exception handler is wrapped around the cur-
rent exception handler (or one higher up the call stack), the Finally
block of the current exception handler is called, and execution then
jumps to the Catch block of the next active exception handler. If no
other exception handler is active, the program will crash.

64 Destination Visual Basic .NET

Central Exception Handlers
It’s tedious to add exception handling to all procedures in a project, but it’s a
necessity. Every unexpected exception must be displayed to the user in the
same format, and this can take a considerable amount of code. Adding a central
exception handler can help tremendously.

A central exception handler is a procedure that you call when an excep-
tion occurs. At a minimum, a central exception handler displays a consistent
error message to the user. However, you can add capabilities to the central
exception handler as you see fit. For instance, you can have your central excep-
tion handler send an e-mail message to a support specialist whenever an unex-
pected exception occurs, or you can actually include code to take a snapshot of
the state of the machine and log the loaded applications and loaded DLLs along
with their versions.

The following is a typical central exception handler:

Friend Sub HandleException(ByVal strModule As String, ByVal e As Exception)
’ Purpose : Provide a central exception-handling mechanism.
’ Accepts : strModule - the module in which the error was
’ encountered (form, class, standard, and so on.)
’ e - the exception that occurred.
Dim strMessage As String
Dim strCaption As String

Try
’ Build the error message.
strMessage = “Exception: “ & e.Message & ControlChars.CrLf & _

ControlChars.CrLf & _
 “Module: “ & strModule & ControlChars.CrLf & _
 “Method: “ & e.TargetSite.Name & ControlChars.CrLf & _
ControlChars.CrLf & _

 “Please notify My Software’s tech support “ & _
 “at 555-1213 about this issue.” & ControlChars.CrLf & _
 “Please provide the support technician with “ & _
 “information shown in “ & ControlChars.CrLf & _
 “this dialog box as well as an explanation of what “ & _
 “you were” & ControlChars.CrLf & “doing when this “ & _
 “error occurred."

’ Build the title bar text for the message box. The text includes
’ the version number of the program.
With System.Reflection.Assembly.GetExecutingAssembly.GetName.Version

strCaption = “Unexpected Exception! Version: “ & _
.Major & “.” & _

Reading 3 Exception Handling 65

.Minor & “.” & _
Format(.Revision, “0000”)

End With

’ Show the error to the user.
MessageBox.Show(strMessage, strCaption, _

MessageBoxButtons.OK, MessageBoxIcon.Exclamation)
Finally

End Try

End Sub

To use this central exception handler, you simply call the procedure in an
exception handler like this:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles Button1.Click

Dim intNumerator As Integer = 100
Dim intDenominator As Integer = 0
Dim lngResult As Long

Try

’ This next statement throws an exception.
lngResult = CLng(intNumerator / intDenominator)

Catch objE As Exception
Call HandleException(Me.Name, objE)

End Try

End Sub

When the exception illustrated in the previous example occurs, the central
exception handler is called and it displays the dialog box shown in Figure 3-1.
Imagine trying to display such a comprehensive error message from every
exception handler in every procedure in every module without using a central
exception handler!

66 Destination Visual Basic .NET

F10LN01Figure 3-1 A central exception handler makes it easy to display com-
prehensive error messages.

Notice the use of Me.Name in the call to the exception handler, which
makes the line of code a bit more portable. You can copy the Catch statement
as well as this statement to the Clipboard and paste it into other procedures.
This enables you to write the exception handlers in your various procedures
more quickly and allows you to change the way exceptions are handled or dis-
played by changing code in one location rather than in hundreds or thousands
of locations.

The Exception object tracks the procedure in which an exception occurs
(e.TargetSite.Name), but it doesn’t keep track of the object (module) involved.
This is why the reference to Me.Name is in the code shown previously.

For modules other than forms, Name doesn’t work, so you have to use the
literal class name. However, in this situation it’s best to create a module-level
constant and use the constant so that you don’t have to modify the exception
handlers’ code if a module’s name is changed. If you use a generic constant
name (such as mc_Module), you can copy the Catch and Call HandleException
statements from one module and paste them into another module without
having to make any modifications.

Although the central exception handler shown earlier displays the error
message to the user in a consistent fashion, you must determine the code that
each exception handler will have in addition to calling the HandleException
method. For instance, what additional code (if any) should go in the Catch
block? What code should go in the Finally block? You should make your excep-
tion handlers as generic as possible, but you also should make sure that each
one is appropriate for the procedure in which it resides.

Reading 3 Exception Handling 67

Logging Exceptions to a Text File
It’s often useful to have a log of any exceptions that occur. For instance, during
the testing phase of your project, you need to know as much as you can about
any errors that happen. You usually can’t rely on reports from users. When it’s
critical that you know about every exception in your program, you should use
a central exception handler to create an exception log.

Creating an exception log is simple. First create a central exception han-
dler as discussed earlier. Then, within the central exception handler, devise a
mechanism to log the exceptions to a text file. The following code illustrates
one way to log exceptions to a text file. This code is shown as it would appear
as part of the central exception handler shown previously. It assumes that there
is a global variable in the project called g_strExceptionLogFileName that con-
tains the path and name of the exception log file.

‘ Open a new stream writer to the log file.
Dim objStream As New System.IO.StreamWriter(g_strExceptionLogFileName, _

True)
Dim strLogText As String

‘ Create the log text.
strLogText = DateTime.Now & ControlChars.CrLf & _

 “Exception: “ & e.Message & ControlChars.CrLf & _
 “Module: “ & strModule & ControlChars.CrLf & _
 “Method: “ & e.TargetSite.Name & ControlChars.CrLf & _
 “Stack: “ & e.StackTrace & ControlChars.CrLf

‘ Write the exception message.
objStream.WriteLine(strLogText)

‘ Flush the text to the log file.
objStream.Flush()

‘ Close the log file.
objStream.Close()

If the file does not exist, the StreamWriter creates it. If the file exists, text
is appended to it. Once the file is opened, a log entry is written. Here is a sam-
ple of a text file created using the previous code:

4/8/2002 11:43:00 PM
Exception: Arithmetic operation resulted in an overflow.
Module: Form1
Method: Button1_Click
Stack: at Hungarian.Form1.Button1_Click(Object sender, EventArgs
e) in C:\Documents and Settings\James Foxall\My Documents\Visual

(continued)

68 Destination Visual Basic .NET

Studio Projects\Form1.vb:line 97

4/8/2002 11:46:47 PM
Exception: Arithmetic operation resulted in an overflow.
Module: Form1
Method: Button1_Click
Stack: at Hungarian.Form1.Button1_Click(Object sender, EventArgs
e) in C:\Documents and Settings\James Foxall\My Documents\Visual
Studio Projects\Form1.vb:line 97

4/8/2002 11:47:31 PM
Exception: Funky crazy custom error
Module: Form1
Method: Button1_Click
Stack: at Hungarian.Form1.Button1_Click(Object sender, EventArgs
e) in C:\Documents and Settings\James Foxall\My Documents\Visual
Studio Projects\Form1.vb:line 96

You can start to see a trend in this exception log. Whoever wrote the Form1
module needs to spend a little more time with the code. The information shown
here is the minimum amount you’d want to include in a text file; you might want
to include much more. For instance, you might want to include the user name of
the person running the program when the exception occurs, or you might want to
include the machine name in the log entry. The possibilities are endless. Whatever
you choose to put into the text file, make sure it’s pertinent information that will
help you find and correct the problem.

For clarity, the following is the complete exception handler shown previ-
ously, with the inclusion of the exception log code:

Friend Sub HandleException(ByVal strModule As String, ByVal e As Exception)
’ Purpose : Provide a central error-handling mechanism.
’ Accepts : strModule - the module in which the error was
’ encountered (form, class, standard, and so on.)
’ e - the exception that occurred.
Dim strMessage As String
Dim strCaption As String

Try
’ Build the error message.
strMessage = “Exception: “ & e.Message & vbCrLf & vbCrLf & _

 “Module: “ & strModule & vbCrLf & _
 “Method: “ & e.TargetSite.Name & vbCrLf & vbCrLf & _
 “Please notify My Software’s tech support “ & _
 “at 555-1213 about this issue.” & vbCrLf & _
 “Please provide the support technician with “ & _
 “information shown in “ & vbCrLf & “this dialog “ & _
 “box as well as an explanation of what you “ & _

Reading 3 Exception Handling 69

 “were” & vbCrLf & “doing when this “ & _
 “error occurred."

’ Build the title bar text for the message box. The text includes
’ the version number of the program.
With System.Reflection.Assembly.GetExecutingAssembly.GetName.Version

strCaption = “Unexpected Exception! Version: “ & _
.Major & “.” & _
.Minor & “.” & _
Format(.Revision, “0000”)

End With

’ Open a new stream writer to the log file.
Dim objStream As New System.IO.StreamWriter(g_strExceptionLogFileName, _

True)
Dim strLogText As String

’ Create the log text.
strLogText = DateTime.Now & ControlChars.CrLf & _

 “Exception: “ & e.Message & ControlChars.CrLf & _
 “Module: “ & strModule & ControlChars.CrLf & _
 “Method: “ & e.TargetSite.Name & ControlChars.CrLf & _
 “Stack: “ & e.StackTrace & ControlChars.CrLf

’ Write the exception message.
objStream.WriteLine(strLogText)
’ Flush the text to the log file.
objStream.Flush()
’ Close the log file.
objStream.Close()

’ Show the error to the user.
MessageBox.Show(strMessage, strCaption, MessageBoxButtons.OK, _

MessageBoxIcon.Exclamation)

Finally

End Try

End Sub

Once your application is logging error messages, you must decide what
you want to do with those logs. If you’re on-site with the program, you can
manually retrieve copies of the exception logs. Or you can have users e-mail
you their logs if they encounter problems. You might even write a program that
automatically e-mails the logs to you on a preset schedule, or you might want
to write an e-mail interface directly into the central exception handler. Log files
can be very useful for locating specific bugs as well as general program errors,

70 Destination Visual Basic .NET

and they trivially easy to create; you should seriously consider adding this fea-
ture to your programs. You might even elect to include the logging code but
turn off the feature by default. You could then enable or disable log file gener-
ation via your program’s interface or a registry setting.

Goals of Exception Handling
The goals of utilizing exception handling are

■ Preventing your program from crashing

■ Gracefully correcting mistakes whenever possible

■ Notifying the user when exceptions occur so that the problems
can be addressed

Directives

3.1 Use Try…Catch…Finally to handle unexpected as well as
anticipated exceptions.

Most exception handlers are designed to trap exceptions that aren’t anticipated
at design time. Use a Try…Catch…Finally structure to catch all unanticipated
exceptions.

Incorrect:
Private Sub btnSelectPicture_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles _
btnSelectPicture.Click

’ Purpose : Open the selected picture and display it in the
’ picture box.

’ Show the open file dialog box.
If ofdSelectPicture.ShowDialog = DialogResult.OK Then

’ Load the picture into the picture box.
picShowPicture.Image = Image.FromFile(ofdSelectPicture.FileName)
’ Show the name of the file in the form’s caption.
Me.Text = “Picture Viewer(“ & ofdSelectPicture.FileName & “)"

End If

End Sub

Reading 3 Exception Handling 71

Correct:
Private Sub btnSelectPicture_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles _
btnSelectPicture.Click

’ Purpose : Open the selected picture and display it in the
’ picture box.

Try
’ Show the open file dialog box.
If ofdSelectPicture.ShowDialog = DialogResult.OK Then

’ Load the picture into the picture box.
picShowPicture.Image = Image.FromFile(ofdSelectPicture.FileName)
’ Show the name of the file in the form’s caption.
Me.Text = “Picture Viewer(“ & ofdSelectPicture.FileName & “)"

End If

Catch ex As Exception
MessageBox.Show(“Error: “ & e.Message, “Error!", _

MessageBoxButtons.OK, MessageBoxIcon.Exclamation)
End Try

End Sub

3.2 Use a consistent format when dealing with unanticipated
exceptions.

When you use Try…Catch…Finally, it’s important to use a consistent format for
handling unanticipated exceptions. It’s best to use a central exception handler,
but if you don’t use one, create an exception handler like this typical Catch
block:

Catch ex As Exception
MessageBox.Show("Exception: " & ex.Message & ControlChars.CrLf & _

ControlChars.CrLf & _
 "Module: " & modulename & ControlChars.CrLf & _
 "Method: " & ex.TargetSite.Name)

The only part of the MessageBox.Show statement that should be modified for
each procedure is the module.

You can add code to the Catch block at your discretion, such as invoking
a rollback on a database transaction. Of course, the necessary code will vary
from procedure to procedure, and some code might best be placed in the
Finally block, depending on the situation at hand.

Creating a central exception handler eliminates the necessity to microman-
age the exception handler in every procedure. However, if you don’t use a cen-
tral exception handler, you must handle and display exceptions in a consistent
manner.

72 Destination Visual Basic .NET

Incorrect:
Catch ex As Exception

MessageBox.Show(“An unexpected exception has occurred.” & _
ControlChars.CrLf & ex.Message)

Catch ex As Exception
MessageBox.Show(“An error has occurred!", “Error!", _

MessageBoxButtons.OK, MessageBoxIcon.Exclamation)

Correct:
Catch ex As Exception

MessageBox.Show(“Exception: “ & ex.Message & _
ControlChars.CrLf & ControlChars.CrLf & _

 “Module: “ & Me.Name & ControlChars.CrLf & _
 “Method: “ & ex.TargetSite.Name)

Catch ex As Exception
MessageBox.Show(“Exception: “ & ex.Message & _

ControlChars.CrLf & ControlChars.CrLf & _
 “Module: “ & mc_ModuleName & ControlChars.CrLf & _
 “Method: “ & ex.TargetSite.Name)

3.3 Never blame the user.
When you display an error message to a user, never blame the user or make the
user feel he or she did something wrong. If the exception that has been caught
was not anticipated, the fault lies with the programmer. If the exception was a
result of “bad” user input, find a way to politely inform the user of the situation
rather than make the user feel as bad as the data. Make sure the user can tell the
difference between a programming error and a legitimate exception (an antici-
pated error).

Incorrect:
Dim intTotal As Integer
Dim intPeriods As Integer

Try
’ Get the total and number of periods from the user.
intTotal = CInt(txtTotal.Text)
intPeriods = CInt(txtPeriods.Text)

’ Display the payment.
MessageBox.Show(“Each payment is: “ & _

CSng(intTotal / intPeriods), _
 “Payment Info", MessageBoxButtons.OK, _
MessageBoxIcon.Information)

Reading 3 Exception Handling 73

Catch ex As InvalidCastException
’ The user didn’t enter a numeric value!
MessageBox.Show(“The total can’t be computed because you “ & _

 “failed to enter a numeric value.", _
 “User Error", MessageBoxButtons.OK, _
MessageBoxIcon.Warning)

Catch ex As Exception
MessageBox.Show(“Exception: “ & ex.Message & ControlChars.CrLf & _

ControlChars.CrLf & _
 “Module: “ & “test” & ControlChars.CrLf & _
 “Method: “ & ex.TargetSite.Name)

End Try

Correct:
Dim intTotal As Integer
Dim intPeriods As Integer

Try
’ Get the total and number of periods from the user.
intTotal = CInt(txtTotal.Text)
intPeriods = CInt(txtPeriods.Text)

’ Display the payment.
MessageBox.Show(“Each payment is: “ & _

CSng(intTotal / intPeriods), _
 “Payment Info", MessageBoxButtons.OK, _
MessageBoxIcon.Information)

Catch ex As InvalidCastException
’ The user didn’t enter a numeric value.
MessageBox.Show(“Please enter a numeric value in each “ & _

 “required field.", “MyApplication", _
MessageBoxButtons.OK, _
MessageBoxIcon.Information)

Catch ex As Exception
MessageBox.Show(“Exception: “ & ex.Message & ControlChars.CrLf & _

ControlChars.CrLf & _
 “Module: “ & “test” & ControlChars.CrLf & _
 “Method: “ & ex.TargetSite.Name)

End Try

Tip Whenever possible, offer the user practical advice for dealing
with an exception.

75

Reading 4

Arrays, Lists, and
Collections

The .NET Framework doesn’t merely include classes for managing system
objects, such as files, directories, processes, and threads. It also exposes objects,
such as complex data structures (queues, stacks, and hash tables), that help
developers solve recurring problems.

Many real-world applications use arrays and collections, and the .NET
Framework support for arrays and collection-like objects is really outstanding. It
can take a while for you to get familiar with the many possibilities that the .NET
runtime offers, but this effort pays off nicely at coding time.

The Array Class
The Array class has no public constructor because its New procedure has a Pro-
tected scope. In practice, this is no problem because you create an array using
the standard Visual Basic syntax, and, you can even use initializers:

‘ An array initialized with the powers of 2
Dim intArr() As Integer = {1, 2, 4, 8, 16, 32, 64, 128, 256, 512}
‘ Noninitialized two-dimensional array
Dim lngArr(10, 20) As Long
‘ An empty array
Dim dblArr() As Double

From Programming Microsoft Visual Basic .NET by Francesco Balena. pp. 385-418. (Redmond:
Microsoft Press. 2002.) Copyright © 2002 by Francesco Balena.

76 Destination Visual Basic .NET

A variation of this syntax lets you create an array and initialize it on the fly,
which is sometimes useful for passing an argument or assigning a property that
takes an array without having to create a temporary array. Consider the code at
the top of the next page.

‘ Create a temporary array.
Dim tmp() As Integer = {2, 5, 9, 13}
‘ The obj.ValueArray property takes an array of Integer.
obj.ValueArray = tmp
‘ Clear the temporary variable.
tmp = Nothing

The ability to create and initialize an array in a single statement makes the
code more concise, even though the syntax you need isn’t exactly intuitive:

obj.ValueArray = New Long() {2, 5, 9, 13}

As in Visual Basic 6, you get an error if you access an empty array, which
is an array that has no elements. Because the array is an object, you can test it
using a plain Is operator and use ReDim on the array if necessary:

If dblArr Is Nothing Then
ReDim dblArr(100) ’ Note: no As clause in ReDims

End If

You can query an array for its rank (that is, the number of dimensions) by
using its Rank property, and you can query the total number of its elements by
means of its Length property:

‘ ...(Continuing preceding example)...
Console.WriteLine(lngArr.Rank) ’ => 2
‘ lngArr has 11*21 elements.
Console.WriteLine(lngArr.Length) ’ => 231

The GetLength method returns the number of elements along a given
dimension, whereas GetLowerBound and GetUpperBound return the lowest
and highest index along the specified dimension. Unlike values returned by the
LBound and UBound functions, the dimension number is 0-based, not 1-based:

‘ ...(Continuing previous example)...
Console.WriteLine(lngArr.GetLength(0)) ’ => 11
Console.WriteLine(lngArr.GetLowerBound(1)) ’ => 0
Console.WriteLine(lngArr.GetUpperBound(1)) ’ => 20

You can visit all the elements of an array using a single For Each loop and
a strongly-typed variable; this is an improvement on Visual Basic 6, which
forces you to use a Variant (and therefore late binding) when working with
numeric or string arrays. This technique also works with multidimensional

Reading 4 Arrays, Lists, and Collections 77

arrays, so you can process all the elements in a two-dimensional array with just
one loop:

Dim strArr(,) As String = {{"00", “01", “02"}, {"10", “11", “12"}}
Dim s As String
For Each s In strArr

Console.Write(s & “,”) ’ => 00,01,02,10,11,12
Next

For Each loops on multidimensional arrays work in previous language
versions as well, with an important difference: Visual Basic 6 visits array ele-
ments in a column-wise order (all the elements in the first column, then all the
elements in the second column, and so on), whereas Visual Basic .NET follows
the more natural row-wise order.

Creating Nonzero-Based Arrays
The GetLowerBound method might look unnecessary because all Visual Basic
arrays have indexes beginning with 0. However, it turns out that you can create
arrays with arbitrary starting indexes by means of the shared Array.CreateIn-
stance method, even though the required syntax isn’t exactly straightforward:

Sub TestArraysWithNonZeroLBound()
’ Create a bidimensional array that is equivalent
’ to the following Visual Basic 6 declaration:
’ Dim(1 To 5, -10 To 10) As Integer

’ Prepare an auxiliary array with the length along each direction.
Dim lengths() As Integer = {5, 21}
’ An auxiliary array with the starting index along each direction
Dim lbounds() As Integer = {1, -10}
’ Create a generic Array object from the shared CreateInstance method.
Dim arrObj As Array = _

Array.CreateInstance(GetType(Integer), lengths, lbounds)
’ Assign it to an array with the right rank.
Dim arr(,) As Integer = CType(arrObj, Integer(,))

’ Prove that it worked.
Console.WriteLine(arr.GetLowerBound(0)) ’ => 1
Console.WriteLine(arr.GetUpperBound(0)) ’ => 5
Console.WriteLine(arr.GetLowerBound(1)) ’ => -10
Console.WriteLine(arr.GetUpperBound(1)) ’ => 10
’ Assign an element, and read it back.
arr(1, -1) = 1234
Console.WriteLine(arr(1, -1)) ’ => 1234

End Sub

78 Destination Visual Basic .NET

Now that I have shown you how to create arrays with nonzero lower
bounds, I ask you not to use them for anything other than impressing your friends
at the local VB user group. The main problem with this technique is that it works
well only with multidimensional arrays: when you use it with one-dimensional
arrays it forces you to read and write array elements by calling the GetValue and
SetValue methods, a rather clumsy practice. (This difference is caused by the
fact that one-dimensional arrays, also known as vectors in .NET, are imple-
mented differently from other arrays.) In addition, arrays with a lower index
other than 0 aren’t Common Language Specification (CLS) compliant, so you
might have problems sharing them with other .NET languages.

Finally, a nonzero lower index changes the way some methods of the
Array class work. For example, the IndexOf method (see later in the “Searching
Values” section) is expected to return −1 if an element isn’t found, which appar-
ently makes it unusable with arrays whose lowest index is a negative number.
The truth is, IndexOf returns the lowest index minus 1 when an element isn’t
found and therefore does work correctly even with these arrays, but this detail
makes working with them even more confusing.

Copying Arrays
The Array class supports the ICloneable interface, so you can create a shallow
copy of an array using the Clone instance method.

‘ This works if Option Strict is Off.
Dim anotherArray(,) As Integer = arr.Clone

‘ This is the required syntax if Option Strict is On.
‘ (You can also use CType instead of DirectCast.)
Dim anotherArray(,) As Integer = DirectCast(arr.Clone, Integer())

You can copy a one-dimensional array to another, and you decide the
starting index in the destination array:

‘ Create and initialize an array (10 elements).
Dim sourceArr() As Integer = {1, 2, 3, 5, 7, 11, 13, 17, 19, 23}
‘ Create the destination array (must be same size or larger).
Dim destArr(20) As Integer
‘ Copy the source array into the second half of the destination array.
sourceArr.CopyTo(destArr, 10)

Pay attention to an important detail: the index in the target array is actually
the offset from the array starting index. If the target array is 0-based (as are all
the arrays created with the Dim statement), you can safely pass the index of the

Reading 4 Arrays, Lists, and Collections 79

first element that will be overwritten in the target array. However, if you used
Array.CreateInstance to create an array whose lowest index is a number other
than 0, you must modify the second argument of the CopyTo method accord-
ingly. For example, if the array is 1-based, pass the value 9 so that destArr(10)
is the first overwritten element.

Sorting Elements
The Array class offers several shared methods for processing arrays quickly and
easily. One is the Array.Sort method. You can sort arrays of objects using an
arbitrary group of keys by means of the IComparable and IComparer interfaces.
The Sort method is even more flexible than anything you’ve seen so far. For
example, you can sort just a portion of an array:

‘ Sort only elements [10,100] of the targetArray.
‘ Second argument is starting index; last argument is length of the subarray.
Array.Sort(targetArray, 10, 91)

You can also sort an array of values using another array that holds the sort-
ing keys, which lets you sort arrays of structures or objects. To see how this
overloaded version of the Sort method works, let’s start defining a structure:

Structure Employee
Public FirstName As String
Public LastName As String
Public HireDate As Date

Sub New(ByVal firstName As String, ByVal lastName As String, _
ByVal hireDate As Date)
Me.FirstName = firstName
Me.LastName = lastName
Me.HireDate = hireDate

End Sub

’ A function to display an element’s properties easily
Function Description() As String

Return FirstName & “ “ & LastName & _
 “ (hired on “ & HireDate.ToShortDateString & “)"

End Function
End Structure

The following code creates a main array of Employee structures, then cre-
ates an auxiliary key array that holds the hiring date of each employee, and
finally sorts the main array using the auxiliary array:

‘ Create a test array.
Dim employees() As Employee = { _

(continued)

80 Destination Visual Basic .NET

New Employee(“Joe", “Doe", #3/1/2001#), _
New Employee(“Robert", “Smith", #8/12/2000#), _
New Employee(“Ann", “Douglas", #11/1/1999#)}

‘ Create a parallel array of hiring dates.
Dim hireDates(UBound(employees)) As Date
Dim j As Integer
For j = 0 To employees.Length - 1

hireDates(j) = employees(j).HireDate
Next
‘ Sort the array of Employees using HireDates to provide the keys.
Array.Sort(hireDates, employees)
‘ Prove that the array is sorted on the HireDate field.
For j = 0 To employees.Length - 1

Console.WriteLine(employees(j).Description)
Next

Interestingly, the key array is sorted as well, so you don’t need to initialize it
again when you add another element to the main array:

‘ Add a fourth employee.
ReDim Preserve employees(3)
employees(3) = New Employee(“Chris", “Doe", #5/9/2000#)
‘ Extend the key array as well – no need to reinitialize it.
ReDim Preserve hireDates(3)
hireDates(3) = employees(3).HireDate
‘ Re-sort the new, larger array.
Array.Sort(hireDates, employees)

An overloaded version of the Sort method lets you sort a portion of an
array of values for which you provide an array of keys. This is especially useful
when you start with a large array that you fill only partially:

‘ Create a test array with a lot of room.
Dim employees(1000) As Employee
‘ Initialize only its first four elements.
§
‘ Sort only the portion actually used.
Array.Sort(hireDates, employees, 0, 4)

All the versions of the Array.Sort method that you’ve seen so far can take
an additional IComparer object, which dictates how the array elements or keys
are to be compared with one another.

The Array.Reverse method reverses the order of elements in an array or in
a portion of an array, so you can apply it immediately after a Sort method to get
descending sorting:

Reading 4 Arrays, Lists, and Collections 81

‘ Sort an array of Integers in reverse order.
Array.Sort(intArray)
Array.Reverse(intArray)

You pass the initial index and number of elements to reverse only a por-
tion of an array:

‘ Reverse only the first 10 elements in intArray.
Array.Reverse(intArray, 0, 10)

You have a special case when you reverse only two elements, which is the
same as swapping two consecutive elements, a frequent operation when you’re
working with arrays:

‘ Swap elements at indexes 5 and 6.
Array.Reverse(intArray, 5, 2)

Clearing, Copying, and Moving Elements
You can clear a portion of an array with the Clear method, without a For loop:

‘ Clear elements [10,100] of an array.
Array.Clear(arr, 10, 91)

The Array.Copy method lets you copy elements from a one-dimensional
array to another. There are two overloaded versions for this method. The first
version copies a given number of elements from the source array to the desti-
nation array:

Dim intArr() As Integer = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
Dim intArr2(20) As Integer
‘ Copy the entire source array into the first half of the target array.
Array.Copy(intArr, intArr2, 10)
Dim i As Integer
For i = 0 To 20

Console.Write(CStr(intArr2(i)) & “ “)
’ => 1 2 3 4 5 6 7 8 9 10 0 0 0 0 0 0 0 0 0 0 0

Next

The second version lets you decide the starting index in the source array,
the starting index in the destination array (that is, the index of the first element
that will be overwritten), and the number of elements to copy:

‘ Copy elements at indexes 5-9 to the end of destArr.
Array.Copy(intArr, 5, intArr2, 15, 5)
‘ This is the first element that has been copied.
Console.WriteLine(intArr2(15)) ’ => 6

You get an exception of type ArgumentOutOfRangeException if you provide
wrong values for the indexes or the destination array isn’t large enough, and you
get an exception of type RankException if either array has two or more dimensions.

82 Destination Visual Basic .NET

The Copy method works correctly even when source and destination
arrays have a different type, in which case it attempts to cast each individual
source element to the corresponding element in the destination array. The
actual behavior depends on many factors, though, such as whether the source
or the destination is a value type or a reference type. For example, you can
always copy from any array to an Object array, from an Integer array to a Long
array, and from a Single array to a Double array because they are widening con-
versions and can’t fail. Copy throws an exception of type TypeMismatchExcep-
tion when you attempt a narrowing conversion between arrays of value types,
even though individual elements in the source array might be successfully con-
verted to the destination type:

‘ This Copy operation succeeds even if array types are different.
Dim intArr3() As Integer = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
Dim lngArr3(20) As Long
Array.Copy(intArr3, lngArr3, 10)

‘ This Copy operation fails with TypeMismatchException.
‘ (But you can carry it out with an explicit For loop.)
Dim lngArr4() As Long = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
Dim intArr4(20) As Integer
Array.Copy(lngArr4, intArr4, 10)

Conversely, if you copy from and to an array of reference type, the
Array.Copy method attempts the copy operation for each element; if an Invalid-
CastException object is thrown for an element, the method copies neither that
element nor any of the values after the one that raised the error. For more details
about the Array.Copy method, see the .NET Framework SDK documentation.

The SDK documentation doesn’t mention one of the most important fea-
tures of the Array.Copy method: the ability to copy a portion of an array over
itself. In this case, the Copy method performs a “smart copy,” in the sense that
elements are copied correctly, in ascending order when you’re copying to a
lower index and in reverse order when you’re copying to a higher index. So
you can use the Copy method to delete one or more elements and fill the hole
that would result by shifting all subsequent elements one or more positions
toward lower indexes:

Dim lngArr5() As Long = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
‘ Delete element at index 4.
Array.Copy(lngArr5, 5, lngArr5, 4, 5)
‘ Complete the delete operation by clearing the last element.
Array.Clear(lngArr5, lngArr5.GetUpperBound(0), 1)
‘ Now the array contains: {1, 2, 3, 4, 6, 7, 8, 9, 10, 0}

Reading 4 Arrays, Lists, and Collections 83

You can use this code as the basis for a reusable routine that works with
any type of array:

Sub ArrayDeleteElement(ByVal arr As Array, ByVal index As Integer)
’ Shift elements from arr(index+1) to arr(index).
Array.Copy(arr, index + 1, arr, index, UBound(arr) - Index)
’ Clear the last element.
arr.Clear(arr, arr.GetUpperBound(0), 1)

End Sub

Inserting an element is also easy, and again you can create a generic rou-
tine that works with arrays of any type:

Sub ArrayInsertElement(ByVal arr As Array, ByVal index As Integer, _
Optional ByVal newValue As Object = Nothing)
’ Shift elements from arr(index) to arr(index+1) to make room.
Array.Copy(arr, index, arr, index + 1, arr.Length - index - 1)
’ Assign the element using the SetValue method.
arr.SetValue(newValue, index)

End Sub

The Array class exposes the SetValue and GetValue methods to assign and
read elements; you don’t normally use these methods in regular programming,
but they turn out to be useful in generic routines (such as the two preceding
routines) that work with any type of array. SetValue and GetValue are also useful
for working with elements of non-CLS-compliant arrays with a nonzero lowest
index. (See “Creating Nonzero-Based Arrays” earlier in this reading.)

You can also use Copy with multidimensional arrays, in which case the
array is treated as if it were a one-dimensional array with all the rows laid down
in memory one after the other.

Searching Values
The IndexOf method searches an array for a value and returns the index of the
first element that matches or −1 if the search fails:

Dim strArray() As String = {"Robert", “Joe", “Ann", “Chris", “Joe"}
Console.WriteLine(Array.IndexOf(strArray, “Ann”)) ’ => 2
‘ Note that string searches are case sensitive.
Console.WriteLine(Array.IndexOf(strArray, “ANN”)) ’ => -1

More precisely, IndexOf returns the lowest index value minus 1 when the
search fails; this difference is important only when the array isn’t 0-based. You
can also specify a starting index and an optional ending index; if an ending
index is omitted, the search continues until the end of the array.

84 Destination Visual Basic .NET

You can use this overloaded form to find all the values in the array with a
given value:

‘ Search for all the occurrences of the “Joe” string.
Dim index As Integer = -1
Do

’ Search next occurrence.
index = Array.IndexOf(strArray, “Joe", index + 1)
’ Exit the loop if not found.
If index = -1 Then Exit Do
Console.WriteLine(“Found at index {0}", index)

Loop

The preceding loop displays the following messages in the console window:

Found at index 1
Found at index 4

The LastIndexOf method is similar to IndexOf except that it returns the
index of the last occurrence of the value. Because the search is backward, you
must pass a start index higher than the end index:

‘ A revised version of the search loop, which searches
‘ from higher indexes toward the beginning of the array.
index = strArr.Length
Do

index = Array.LastIndexOf(strArr, “Joe", index - 1)
If index = -1 Then Exit Do
Console.WriteLine(“Found at index {0}", index)

Loop

The IndexOf and LastIndexOf methods perform a linear search, so their
performance degrades linearly with larger arrays. You deliver much faster code
if the array is sorted and you use the BinarySearch method:

‘ Binary search on a sorted array
Dim strArr2() As String = {"Ann", “Chris", “Joe", “Robert", “Sam"}
Console.WriteLine(Array.BinarySearch(strArr2, “Chris”)) ’ => 1

If the binary search fails, the method returns a negative value that’s the bit-
wise complement of the index of the first element that’s larger than the value
being searched. This feature lets you determine where the value should be
inserted in the sorted array:

index = Array.BinarySearch(strArr2, “David”)
If index >= 0 Then

Console.WriteLine(“Found at index {0}", index)
Else

’ Negate the result to get the index for the insertion point.
index = Not index
Console.WriteLine(“Not Found. Insert at index {0}", index)

Reading 4 Arrays, Lists, and Collections 85

’ => Not found. Insert at index 2
End If

You can pass a start index and the length of the portion of the array to the
point at which you want to perform the search, which is useful when you’re
working with an array that’s only partially filled:

Console.Write(Array.BinarySearch(strArr2, 0, 3, “Chris”)) ’ => 1

Finally, both syntax forms for the BinarySearch method support an ICom-
parer object at the end of the argument list, which lets you determine how array
elements are to be compared. In practice, you can use the same IComparer
object that you passed to the Sort method to have the array sorted.

Arrays of Arrays
Visual Basic .NET also supports arrays of arrays, that is, arrays whose elements
are arrays. This is a familiar concept to most C++ programmers, but it might be
new to many Visual Basic programmers. In my book Programming Microsoft
Visual Basic 6, I showed how you can create such structures in previous ver-
sions of the language by using the ability to store arrays in Variants. The good
news is that Visual Basic .NET supports arrays of arrays natively, so you don’t
have to resort to any hack.

Arrays of arrays—also known as jagged arrays—are especially useful
when you have a two-dimensional matrix whose rows don’t have the same
length. You can render this structure by using a standard two-dimensional
array, but you’d have to size it to accommodate the row with the highest num-
ber of elements, which would result in a waste of space. The arrays of arrays
concept isn’t limited to two dimensions only, and you might need three-dimen-
sional or four-dimensional jagged arrays. Here is an example of a “triangular”
matrix of strings:

“a00”
"a10” “a11"
"a20” “a21” “a22"
"a30” “a31” “a32” “a33”

Even though Visual Basic .NET supports arrays of arrays natively, I can’t
consider their syntax to be intuitive. The next code snippet shows how you can
initialize the preceding structure and then process it by expanding its rows:

Sub TestJaggedArray()
’ Initialize an array of arrays.
Dim arr()() As String = {New String() {"a00"}, _

New String() {"a10", “a11"}, _
New String() {"a20", “a21", “a22"}, _
New String() {"a30", “a31", “a32", “a33"}}

(continued)

86 Destination Visual Basic .NET

’ Show how you can reference an element.
Console.WriteLine(arr(3)(1)) ’ => a31

’ Assign an entire row.
arr(0) = New String() {"a00", “a01", “a02"}

’ Read an element just added.
Console.WriteLine(arr(0)(2)) ’ => a02

’ Expand one of the rows.
ReDim Preserve arr(1)(3)
’ Assign the new elements. (Currently they are Nothing.)
arr(1)(2) = “a12"
arr(1)(3) = “a13"
’ Read back one of them.
Console.WriteLine(arr(1)(2)) ’ => a12

End Sub

The System.Collections Namespace
The System.Collections namespace exposes many classes that can work as
generic data containers, such as collections and dictionaries. You can learn the
features of all these objects individually, but a smarter approach is to learn
about the underlying interfaces that these classes might implement.

The ICollection, IList, and IDictionary Interfaces
All the collection classes in the .NET Framework implement the ICollection
interface, which inherits from IEnumerable and defines an object that supports
enumeration through a For Each loop. The ICollection interface exposes a read-
only Count property and a CopyTo method, which copies the elements from
the collection object to an array.

The ICollection interface defines the minimum features that a collection-
like object should have. The .NET Framework exposes two more interfaces
whose methods add power and flexibility to the object: IList and IDictionary.

Many classes in the framework implement the IList interface. This inter-
face inherits from ICollection, and therefore from IEnumerable, and represents
a collection of objects that can be individually indexed. All the implementations
of the IList interface fall into three categories:

■ Read-only The collection’s elements can’t be modified or deleted,
nor can new elements be inserted.

Reading 4 Arrays, Lists, and Collections 87

■ Fixed-size Existing items can be modified, but elements can’t be
added or removed.

■ Variable-size Items can be modified, added, and removed.

Table 4-1 summarizes the main properties and methods of the IList inter-
face. You should already be familiar with most of them because they’re imple-
mented in many other collection-like objects that you’ve worked with in the
past, most notably Collection and Dictionary objects in Visual Basic 6.

The IDictionary interface defines a collection-like object that contains one
or more (key, value) pairs for which the key can be any object (not just a string
in Visual Basic 6 collections). The IDictionary interface inherits from ICollection
and extends it using the methods defined in Table 4-2. As for the IList interface,
implementations of the IDictionary interface can be read-only, fixed-size, or
variable-size.

Table 4-1 Members of the IList Interface

Syntax Description

Count Returns the number of elements in the collection (inherited
from ICollection).

CopyTo(array, index) Copies elements from the collection to an array, starting at
the specified index in the array (inherited from ICollection).

Item(index) Gets or sets the element at the specified 0-based index. This
is the default member.

Clear Removes all items from the collection.

Add(object) Appends an element after the last element in the collection
and returns the index where it was inserted.

Insert(index, object) Inserts an element at a given index.

Remove(object) Removes an object from the collection.

RemoveAt(index) Removes an element at the specified index.

Contains(object) Returns True if an object is in the collection.

IndexOf(object) Returns the index of the object in the collection, or −1 if not
found.

IsFixedSize Returns True if no item can be added to the collection.

IsReadOnly Returns True if items can’t be written to.

88 Destination Visual Basic .NET

A class that implements the ICollection, IList, or IDictionary interface isn’t
required to expose all the interface’s properties and methods as Public mem-
bers. For example, the Array class implements IList, but the Add, Insert, and
Remove members don’t appear in the Array class interface because the array
has a fixed size. (You get an exception if you try to access these methods by
casting an array to an IList variable.)

A trait that all the classes in System.Collections except the BitArray class
have in common is that they can store Object values. (As its name implies, the
BitArray class stores Boolean values.) This means that you can store any type of
value inside them and even mix data types inside the same structure. In this
sense, they’re similar to the Collection object in Visual Basic 6, which used Vari-
ants internally and could therefore store numbers, strings, dates, and objects.

The BitArray Class
The BitArray object can hold a large number of Boolean values in a compact
format, using a single bit for each element. This class implements IEnumera-
ble (and thus supports For Each), ICollection (and thus supports indexing of

Table 4-2 Members of the IDictionary Interface

Syntax Description

Count Returns the number of elements in the dictionary (inherited
from ICollection).

CopyTo(array, index) Copies elements from the dictionary to an array, starting at
the specified index in the array (inherited from ICollection).

Item(key) Gets or sets the element associated with the specified key.
This is the default member.

Clear Removes all items from the dictionary.

Add(key, value) Inserts a (key, value) pair into the dictionary; key must not
be Nothing.

Remove(key) Removes the dictionary element associated with a given key.

Contains(key) Returns True if an element with the specified key is in the
dictionary.

Keys Returns an ICollection object that contains all the keys in the
dictionary.

Values Returns an ICollection object that contains all the values in
the dictionary.

IsFixedSize Returns True if no item can be added to the dictionary.

IsReadOnly Returns True if items can’t be written to.

Reading 4 Arrays, Lists, and Collections 89

individual elements), and ICloneable (and thus supports the Clone method).
You can create a BitArray object in many ways:

‘ Provide the number of elements (all initialized to False).
Dim ba As New BitArray(1024)
‘ Provide the number of elements, and initialize them to a value.
Dim ba2 As New BitArray(1024, True)

‘ Initialize the BitArray from an array of Boolean, Byte, or Integer.
Dim boolArr(1023) As Boolean
‘ ...(Initialize the boolArr array)...
Dim ba3 As New BitArray(boolArr)

‘ Initialize the BitArray from another BitArray object.
Dim ba4 As New BitArray(ba)

You can retrieve the number of elements in a BitArray by using either the
Count property or the Length property. The Get method reads and the Set
method modifies the element at the specified index:

‘ Set element at index 9, and read it back.
ba.Set(9, True)
Console.WriteLine(ba.Get(9)) ’ => True

The CopyTo method can move all elements back to an array of Booleans,
or it can perform a bitwise copy of the BitArray to a 0-based Byte or Integer
array:

‘ Bitwise copy to an array of Integers
Dim intArr(31) As Integer ’ 32 elements * 32 bits each = 1024 bits
‘ Second argument is the index in which the copy begins in target array.
ba.CopyTo(intArr, 0)
‘ Check that bit 9 of first element in intArr is set.
Console.WriteLine(intArr(0)) ’ => 512

The Not method complements all the bits in the BitArray object:

ba.Not() ’ No arguments

The And, Or, and Xor methods let you perform the corresponding opera-
tion on pairs of Boolean values stored in two BitArray objects:

‘ Perform an AND operation of all the bits in the first BitArray
‘ with the complement of all the bits in the second BitArray.
ba.And(ba2.Not)

Finally, you can set or reset all the bits in a BitArray class using the SetAll
method:

‘ Set all the bits to True.
ba.SetAll(True)

90 Destination Visual Basic .NET

The BitArray class doesn’t expose any methods that let you quickly deter-
mine how many True (or False) elements are in the array. You can take advan-
tage of the IEnumerator support of this class and use a For Each loop:

Dim b As Boolean
Dim TrueCount As Integer
For Each b In ba

If b Then TrueCount += 1
Next
Console.Write(“Found {0} True values.", TrueCount)

The Stack Class
In Visual Basic 6, you can simulate a last-in-first-out (LIFO) structure by using
an array and an Integer variable that works as the pointer to the current ele-
ment. Under Visual Basic .NET, you can build a stack structure by simply instan-
tiating a System.Collections.Stack object:

‘ Define a stack with initial capacity of 50 elements.
Dim st As New Stack(50)

The three basic methods of a Stack object are Push, Pop, and Peek; the
Count property returns the number of elements currently in the stack:

‘ Create a stack that can contain 100 elements.
Dim st As New Stack(100)
‘ Push three values onto the stack.
st.Push(10)
st.Push(20)
st.Push(30)
‘ Pop the value on top of the stack, and display its value.
Console.WriteLine(st.Pop) ’ => 30
‘ Read the value on top of the stack without popping it.
Console.WriteLine(st.Peek) ’ => 20
‘ Now pop it.
Console.WriteLine(st.Pop) ’ => 20
‘ Determine how many elements are now in the stack.
Console.WriteLine(st.Count) ’ => 1
‘ Pop the only value still on the stack.
Console.WriteLine(st.Pop) ’ => 10
‘ Check that the stack is now empty.
Console.WriteLine(st.Count) ’ => 0

The only other method that can prove useful is Contains, which returns
True if a given value is currently in the stack:

‘ Is the value 10 somewhere in the stack?
If st.Contains(10) Then Console.Write(“Found”)

Reading 4 Arrays, Lists, and Collections 91

The Queue Class
A first-in-first-out (FIFO) structure, also known as a queue or circular buffer, is
often used to solve recurring programming problems. You need a queue struc-
ture when a portion of an application inserts elements at one end of a buffer
and another piece of code extracts the first available element at the other end.
This situation occurs whenever you have a series of elements that you must
process sequentially but you can’t process immediately.

In Visual Basic 6, you typically implement queues by using an array for
holding elements; a pointer to the element added, or enqueued, more recently;
and another pointer to the element about to be extracted, or dequeued, from
the queue. When you’re creating a circular buffer, you must anticipate several
potential error conditions, such as the attempt to extract an element from an
empty queue, and decide what to do when the array is full. (Should you refuse
the insertion, or should you extend the buffer?)

You don’t need to write any code to render a queue in Visual Basic .NET
because you can leverage the System.Collections.Queue object. Queue objects
have an initial capacity, but the internal buffer is automatically extended if the
need arises. You create a Queue object by specifying its initial capacity and an
optional growth factor:

‘ A queue with initial capacity of 200 elements; a growth factor equal to 1.5
‘ (When new room is needed, the capacity will become 300, then 450, 675, etc.)
Dim qu As New Queue(200, 1.5)
‘ A queue with 100 elements and a default growth factor of 2
Dim qu As New Queue(100)
‘ A queue with 32 initial elements and a default growth factor of 2
Dim qu As New Queue()

The key methods of a Queue object are Enqueue, Peek, and Dequeue.
Check the output of the following code snippet, and compare it with the behav-
ior of the Stack object:

Dim qu As New Queue(100)
‘ Insert three values in the queue.
qu.Enqueue(10)
qu.Enqueue(20)
qu.Enqueue(30)
‘ Extract the first value, and display it.
Console.WriteLine(qu.Dequeue) ’ => 10
‘ Read the next value, but don’t extract it.
Console.WriteLine(qu.Peek) ’ => 20
‘ Extract it.
Console.WriteLine(qu.Dequeue) ’ => 20
‘ Check how many items are still in the queue.
Console.WriteLine(qu.Count) ’ => 1
‘ Extract the last element, and check that the queue is now empty.

(continued)

92 Destination Visual Basic .NET

Console.WriteLine(qu.Dequeue) ’ => 30
Console.WriteLine(qu.Count) ’ => 0

The Queue object also supports the Contains method, which checks
whether an element is in the queue, and the Clear method, which clears the
queue’s contents.

The ArrayList Class
You can think of the ArrayList class as a hybrid of the Array and Collection
objects, in that it lets you work with a set of values as if it were an array and a
collection at the same time. For example, you can address elements by their
indexes, sort and reverse them, and search a value sequentially or by means of
a binary search as you do with an array; you can append elements, insert them
in a given position, or remove them as you do with a collection.

The ArrayList object has an initial capacity—in practice, the number of
slots in the internal structure that holds the actual values—but you don’t need
to worry about that because an ArrayList is automatically expanded as needed,
as all collections are. However, you can optimize your code by choosing an ini-
tial capability that offers a good compromise between used memory and the
overhead that occurs whenever the ArrayList object has to expand:

‘ Create an ArrayList with default initial capacity of 16 elements.
Dim al As New ArrayList
‘ Create an ArrayList with initial capacity of 1000 elements.
Dim al2 As New ArrayList(1000)

You can modifiy the capacity at any moment to enlarge the internal array
or shrink it, by assigning a value to the Capacity property. However, you can’t
make it smaller than the current number of elements actually stored in the array
(which corresponds to the value returned by the Count property):

‘ Have the ArrayList take just the memory that it strictly needs.
al.Capacity = al.Count
‘ Another way to achieve the same result
al.TrimToSize

When the current capacity is exceeded, the ArrayList object doubles its
capacity automatically. You can’t control an ArrayList’s growth factor as you can
a Queue object’s, so it’s critical that you set the Capacity property to a suitable
value in order to avoid time-consuming memory allocations.

Another way to create an ArrayList object is by means of its shared Repeat
method, which lets you determine an initial value for the specified number of
elements:

‘ Create an ArrayList with 100 elements equal to a null string.
Dim al As ArrayList = ArrayList.Repeat(“", 100)

Reading 4 Arrays, Lists, and Collections 93

The ArrayList class fully implements the IList interface, so you’re already
familiar with its basic methods. You add elements to an ArrayList object by using
the Add method (which appends the new element after the last item) or the
Insert method (which inserts at the specified index). You remove a specific
object by using the Remove method, remove the element at a given index by
using the RemoveAt method, or remove all elements by using the Clear method:

‘ Be sure that you start with an empty ArrayList.
al.Clear
‘ Append the elements “Joe” and “Ann” at the end of the ArrayList.
al.Add(“Joe”)
al.Add(“Ann”)
‘ Insert “Robert” item at the beginning of the list. (Index is 0-based.)
al.Insert(0, “Robert”)
‘ Remove “Joe” from the list.
al.Remove(“Joe”)
‘ Remove the first element of the list (“Robert” in this case).
al.RemoveAt(0)

The Remove method removes only the first occurrence of a given object,
so you need a loop to remove all the elements with a given value. You can’t
simply iterate through the loop until you get an error, however, because the
Remove method doesn’t throw an exception if the element isn’t found. There-
fore, you must use one of these two approaches:

‘ Using the IndexOf method is concise but not very efficient.
‘ (You can use also the Contains method.)
Do While al.IndexOf(“element to remove”) >= 0

al.Remove(“element to remove”)
Loop

‘ A more efficient technique: loop until the Count property becomes constant.
Dim saveCount As Integer
Do

saveCount = al.Count
al.Remove(“element to remove”)

Loop While al.Count < saveCount

You can read and write any ArrayList element using the Item property.
This property is the default property, so you can omit it and deal with this
object as if it were a standard 0-based array. The main difference between a real
array and an ArrayList object is that an element in an ArrayList object is created
only when you invoke the Add method, so you can’t reference an element
whose index is equal to or higher than the ArrayList’s Count property:

al(0) = “first element”

94 Destination Visual Basic .NET

As with collections, the preferred way to iterate over all elements is
through the For Each loop:

Dim o As Object
For Each o In al

Console.WriteLine(o)
Next

The ArrayList class exposes methods that allow you to manipulate ranges
of elements in one operation. The AddRange method appends to the current
ArrayList object all the elements contained in another object that implements
the ICollection interface. Many .NET classes other than those described in this
chapter implement ICollection, such as the collection of all the items in a List-
Box control and the collection of nodes in a TreeView control. The following
routine takes two ArrayList objects and returns a third ArrayList that contains all
the items from both arguments:

Function ArrayListJoin(ByVal al1 As ArrayList, ByVal al2 As ArrayList) _
As ArrayList
’ Note how we avoid time-consuming reallocations.
ArrayListJoin = New ArrayList(al1.Count + al2.count)
’ Append the items in the two ArrayList arguments.
ArrayListJoin.AddRange(al1)
ArrayListJoin.AddRange(al2)

End Function

The InsertRange method works in a similar way but lets you insert multi-
ple elements at any index in the current ArrayList object:

‘ Insert all the items of al2 at the beginning of the current ArrayList.
al.InsertRange(0, al2)

RemoveRange deletes multiple elements in the current ArrayList object:

‘ Delete the last four elements (assumes there are at least four elements).
al.RemoveRange(al.Count – 4, 4)

You can quickly extract all the items in the ArrayList object by using the
ToArray method or the CopyTo method. Both of them support one-dimensional
target arrays of any compatible type, but the latter also allows you to extract a
subset of ArrayList:

‘ Extract elements to an Object array (never raises an error).
Dim objArr() As Object = al.ToArray()
‘ Extract elements to a String array (might throw an exception
‘ of type InvalidCastException).
‘ (Requires CType or DirectCast if Option Strict is On.)
Dim strArr() As String = CType(al.ToArray(GetType(String)), String())

(continued)

Reading 4 Arrays, Lists, and Collections 95

‘ Same as above but uses the CopyTo method.
‘ (Note that the target array must be large enough.)
Dim strArr2(al.Count) As String
al.CopyTo(strArr2)
‘ Copy only items [1,2], starting at element 4 in the target array.
Dim strArr3() As String = {"0", “1", “2", “3", “4", “5", “6", “7", “8", “9"}
‘ Syntax is: sourceIndex, target, destIndex, count.
al.CopyTo(0, strArr3, 4, 2)

The ArrayList class supports other useful methods, such as Sort, SortRange,
BinarySearch, IndexOf, LastIndexOf, and Reverse. I’ve already described most
of these methods in depth in the section devoted to arrays, so I won’t repeat
their description here.

The last feature of the ArrayList class that’s worth mentioning is its Adapter
shared method. This method takes an IList-derived object as its only argument
and creates an ArrayList wrapper around that object. In other words, instead of
creating a copy of the argument, the Adapter method creates an ArrayList object
that “contains” the original collection: all the changes you make on the outer
ArrayList object are duplicated in the inner collection. The reason you might
want to use the Adapter method is that the ArrayList class implements several
methods—Reverse, Sort, BinarySearch, ToArray, IndexOf, and LastIndexOf, just
to name a few—that are missing in the inner IList object. The following code
sample demonstrates how you can use this technique to reverse (or sort, and so
on) all the items in a ListBox control:

‘ Create a wrapper around the Listbox.Items IList collection.
Dim lbAdapter As ArrayList = ArrayList.Adapter(ListBox1.Items)
‘ Reverse their order.
lbAdapter.Reverse()

If you don’t plan to reuse the ArrayList wrapper further, you can make this code
even more concise:

ArrayList.Adapter(ListBox1.Items).Reverse()

The Hashtable Class
The Hashtable class implements the IDictionary interface, and it behaves much
like the Scripting.Dictionary object you might have used from Visual Basic 6
days. (The Dictionary object can be found in the Microsoft Scripting Runtime
library; see Chapter 4 in my Programming Microsoft Visual Basic 6.) All objects
based on IDictionary manage two internal series of data, values and keys, and
you can use a key to retrieve the corresponding value. The actual implemen-
tation of the methods in this interface depends on the specific object; for

96 Destination Visual Basic .NET

example, the Hashtable class uses an internal hash table, a well-known data
structure that has been studied for decades by computer scientists and has
been thoroughly described in countless books on algorithms.

When a (key, value) pair is added to a Hashtable object, the position of an
element in the internal array is based on the numeric hash code of the key.
When you later search for that key, the key’s hash code is used again to locate
the associated value as quickly as possible, without sequentially visiting all the
elements in the hash table. Collection objects in Visual Basic 6 use a similar
mechanism except that the key’s hash code is derived from the characters in the
key and the key must necessarily be a string. Conversely, the .NET Hashtable
class lets you use any object as a key as long as its hash code can’t change dur-
ing the application’s lifetime. Behind the scenes, the Hashtable object uses the
key object’s GetHashCode, a method that all objects inherit from System.Object,
so you can even affect the way in which hash codes are used by overriding the
GetHashCode method of the objects you’re going to store in the Hashtable.

Depending on how the hash code is evaluated, it frequently happens that
multiple keys map to the same slot (or bucket) in the hash table: in this case,
you have a collision. The Hashtable object uses double hashing to minimize
collisions, but it can’t avoid collisions completely. To get optimal performance
you must select an adequate initial capacity for the hash table: a larger table
doesn’t speed up searches remarkably, but it makes insertions faster.

You can also get better performance by selecting a correct load factor
when you create a Hashtable object. This number determines the maximum
ratio between values and buckets before the hash table is automatically
expanded: the smaller this value is, the more memory is allocated to the internal
table and the fewer collisions occur when you’re inserting or searching for a
value. The default load factor is 1.0, which in most cases delivers a good-
enough performance, but you can set a smaller load factor when you create the
Hashtable if you’re willing to trade memory for better performance. You can ini-
tialize a Hashtable object in many ways:

‘ Default load factor and initial capacity
Dim ht As New Hashtable
‘ Default load factor and specified initial capacity
Dim ht2 As New Hashtable(1000)
‘ Specified initial capability and custom load factor
Dim ht3 As New Hashtable(1000, 0.8)

You can also initialize the Hashtable by loading it with the elements con-
tained in any other object that implements the IDictionary interface (such as
another Hashtable or a SortedList object). This technique is especially useful
when you want to change the load factor of an existing hash table:

Reading 4 Arrays, Lists, and Collections 97

‘ Decrease the load factor of the current Hashtable.
ht = New HashTable(ht, 0.5)

Other, more sophisticated, variants of the constructor let you pass an ICom-
parer object to compare keys in a customized fashion or an IHashCodeProvider
object to supply a custom algorithm for calculating hash codes of keys.

The Hashtable object is very similar to the Scripting.Dictionary object in
that you can add a key and value pair, read or modify the value associated with
a given key through the Item property, and remove an item with the Remove
method:

‘ Syntax for Add method is Add(key, value).
ht.Add(“Joe", 12000)
ht.Add(“Ann", 13000)
‘ Referencing a new key creates an element.
ht.Item(“Robert”) = 15000
‘ Item is the default member, so you can omit its name.
ht(“Chris”) = 11000
Console.Write(ht(“Joe”)) ’ => 12000
‘ The Item property lets you overwrite an existing element.
‘ (You need CInt or CType if Option Strict is On.)
ht(“Ann”) = CInt(ht(“Ann”)) + 1000
‘ Note that keys are compared in case-insensitive mode,
‘ so the following statement creates a *new* element.
ht(“ann”) = 15000
‘ Reading a nonexistent element doesn’t create it.
Console.WriteLine(ht(“Lee”)) ’ Doesn’t display anything.

‘ Remove an element given its key.
ht.Remove(“Chris”)
‘ How many elements are now in the hashtable?
Console.WriteLine(ht.Count) ’ => 4

‘ Adding an element that already exists throws an exception.
ht.Add(“Joe", 11500) ’ Throws ArgumentException.

As I explained earlier, you can use virtually anything as a key, including a
numeric value. When you’re using numbers as keys, a Hashtable looks decep-
tively similar to an array:

ht(1) = 123
ht(2) = 345

But never forget that the expression between parentheses is just a key and not
an index; thus, the ht(2) element isn’t necessarily stored “after” the ht(1) ele-
ment. As a matter of fact, the elements in a Hashtable object aren’t stored in a
particular order, and you should never write code that assumes that they are.

98 Destination Visual Basic .NET

This is the main difference between the Hashtable object and the SortedList
object (which is described next).

The Hashtable object implements the IEnumerable interface, so you can
iterate over all its elements with a For Each loop. Each element of a Hashtable
is a DictionaryEntry object, which exposes a Key and a Value property:

Dim de As DictionaryEntry
For Each de In ht

Console.WriteLine(“ht(‘{0}’) = {1}", de.Key, de.Value)
Next

The Hashtable’s Keys and Values properties return an ICollection-based
object that contains all the keys and all the values, respectively, so you can
assign them to any object that implements the ICollection interface. Or you can
use these properties directly in a For Each loop:

‘ Display all the keys in the Hashtable.
Dim o As Object
For Each o In ht.Keys ’ Or use ht.Values for all the values.

Console.WriteLine(o)
Next

One last note: by default, keys are compared in a case-sensitive way, so
Joe, JOE, and joe are considered distinct keys. You can create case-insensitive
instances of the Hashtable class through one of its many constructors, or you
can use the CreateCaseInsensitiveHashtable shared method of the System.Col-
lections.Specialized.CollectionsUtil, as follows:

Dim ht2 As Hashtable = _
Specialized.CollectionsUtil.CreateCaseInsensitiveHashtable()

The SortedList Class
The SortedList object is arguably the most versatile collection-like object in the
.NET Framework. It implements the IDictionary interface, like the Hashtable
object, and also keeps its elements sorted. Alas, you pay for all this power in
terms of performance, so you should use the SortedList object only when your
programming logic requires an object with all this flexibility.

The SortedList object manages two internal arrays, one for the values and
one for the companion keys. These arrays have an initial capacity, but they
automatically grow when the need arises. Entries are kept sorted by their key,
and you can even provide an IComparer object to affect how complex values
(an object, for example) are compared and sorted. The SortedList class provides
several constructor methods:

‘ A SortedList with default capacity (16 entries)
Dim sl As New SortedList()

Reading 4 Arrays, Lists, and Collections 99

‘ A SortedList with specified initial capacity
Dim sl2 As New SortedList(1000)

‘ A SortedList can be initialized with all the elements in an IDictionary.
Dim ht As New Hashtable()
ht.Add(“Robert", 100)
ht.Add(“Ann", 200)
ht.Add(“Joe", 300)
Dim sl3 As New SortedList(ht)

As soon as you add new elements to the SortedList, they’re immediately
sorted by their key:

‘ Iterate over all the DictionaryEntry items in a SortedList.
Dim de As DictionaryEntry
For Each de In sl3

Console.WriteLine(“sl3(‘{0}’) = {1}", de.Key, de.Value)
Next

Here’s the result that appears in the console window:

sl3(‘Ann’) = 200
sl3(‘Joe’) = 300
sl3(‘Robert’) = 100

Keys are sorted according to the order implied by their IComparable inter-
face, so numbers and strings are always sorted in ascending order. If you want
a different order, you must create an object that implements the IComparer
interface. For example, you can use the following class to invert the natural
string ordering:

Class ReverseStringComparer
Implements IComparer

Function CompareValues(ByVal x As Object, ByVal y As Object) As Integer _
Implements IComparer.Compare
’ Just change the sign of the StrComp function’s result.
Return -StrComp(x.ToString, y.ToString)

End Function
End Class

You can pass an instance of this object to one of the two overloaded construc-
tors that take an IComparer object:

‘ A SortedList that sorts elements through a custom IComparer
Dim sl4 As New SortedList(New ReverseStringComparer)

‘ Here’s a SortedList that loads all the elements in a Hashtable and
‘ sorts them with a custom IComparer object.
Dim sl5 As New SortedList(ht, New ReverseStringComparer)

100 Destination Visual Basic .NET

Here are the elements of the resulting SortedList object:

sl5(‘Robert’) = 100
sl5(‘Joe’) = 300
sl5(‘Ann’) = 200

Table 4-3 summarizes the most important properties and methods of the
SortedList class. You have already met most of them, and the ones you never
met before are almost self-explanatory, so I won’t describe them in detail.

The SortedList class compares keys in case-sensitive mode, with lowercase
characters coming before their uppercase versions (for example with Ann com-
ing before ANN, which in turn comes before Bob). If you want to compare keys
without taking case into account, you can create a case-insensitive SortedList
object using the auxiliary CollectionsUtil object in the System.Collections.Spe-
cialized namespace:

Dim sl6 As SortedList = _
Specialized.CollectionsUtil.CreateCaseInsensitiveSortedList()

In this case, trying to add two elements whose keys differ only in case
throws an ArgumentException object.

Note As I said before, the SortedList class is the most powerful
collection-like object, but it’s also the most demanding in terms of
resources and CPU time. To see what kind of overhead you can
expect when using a SortedList object, I created a routine that adds
100,000 elements to an ArrayList object, a Hashtable object, and a
SortedList object. The results were pretty interesting: The ArrayList
object was about 4 times faster than the Hashtable object, which in
turn was from 8 to 100 times faster than the SortedList object. Even
though you can’t take these ratios as reliable in all circumstances, you
clearly should never use a more powerful data structure if you don’t
really need its features.

Table 4-3 Properties and Methods of the SortedList Class

Syntax Description

Capacity Sets or returns the capacity of the SortedList object.

Count Returns the number of elements currently in the SortedList object.

Item(key) Sets or returns a value given its key (default member).

Reading 4 Arrays, Lists, and Collections 101

The StringCollection and StringDictionary Classes
The StringCollection class (contained in the System.Collections.Specialized
namespace) is a low-overhead class that manages a small collection of strings in
a very efficient way. It exposes most of the properties and methods of the

Keys Returns all the keys in the SortedList object as an ICollection object.

Values Returns all the values in SortedList as an ICollection object.

Add(key, value) Adds a (key, value) pair to SortedList.

Clear Removes all the elements from SortedList.

Clone Creates a shallow copy of the SortedList object.

Contains(key) Returns True if a given key exists.

ContainsKey(key) Returns True if a given key exists (same as Contains).

ContainsValue(value) Returns True if a given value exists.

CopyTo(array, index) Copies all the DictionaryEntries elements to a one-dimensional
array, starting at a specified index in the target array.

GetByIndex(index) Retrieves a value by its index. (Similar to the Item property but
works with the index instead of the key.)

GetKey(index) Retrieves the key associated with the element at the given index.

GetKeyList Returns all the keys as an IList object; all the changes in SortedList
are reflected in this IList object. (Similar to the Keys property but
returns an IList object instead of an ICollection object, and the
result continues to be linked to the list of keys.)

GetValueList Returns all the values as an IList object; all the changes in the Sort-
edList are reflected in this IList object. (Similar to Values property
but returns an IList object instead of an ICollection object, and the
result continues to be linked to the list of values.)

IndexOfKey(key) Returns the 0-based index of an element with a given key, or −1 if
the key isn’t in the SortedList object.

IndexOfValue(value) Returns the 0-based index of the first occurrence of the specified
value, or −1 if the value isn’t in the SortedList object.

Remove(key) Removes the element associated with a given key.

RemoveAt(index) Removes the element at the given index.

SetByIndex(index, value) Assigns a new value to the element at the specified index. (Similar
to the Item property but works with the index instead of the key.)

TrimToSize Sets the capacity to the current number of elements in the Sort-
edList object.

Table 4-3 Properties and Methods of the SortedList Class (continued)

Syntax Description

102 Destination Visual Basic .NET

ArrayList class: Item, Count, Clear, Add, AddRange, Insert, Remove, RemoveAt,
IndexOf, Contains, and CopyTo. The Capacity property is missing, however,
and the constructor takes no arguments:

‘ Create a StringCollection (no support for initial capability).
Dim sc As New System.Collections.Specialized.StringCollection

‘ Fill it with month names in current language, in one operation.
‘ (We leverage the DateFormatInfo object’s MonthNames method, which
‘ returns an array of strings, which in turn implements the IList interface.)
sc.AddRange(System.Globalization.DateTimeFormatInfo.CurrentInfo.MonthNames())

‘ Display the elements in the StringCollection.
Dim s As String
For Each s In sc

Console.WriteLine(s)
Next

In general, you should prefer StringCollection objects to more resource-
intensive objects, such as the ArrayList object, when you’re working with small
sets of elements (say, 100 elements or fewer). If a StringCollection object
resolves the majority (but not all) of your programming tasks, consider using a
temporary ArrayList object for implementing missing functionality. For exam-
ple, say that a StringCollection satisfies your needs except that you need to sort
its elements once in a while during the application’s lifetime. Because the
StringCollection object implements the IList interface, you can pass it to the
shared ArrayList.Adapter method to create a temporary ArrayList that does what
you need:

‘ A temporary ArrayList that wraps around the StringCollection object
Dim al As ArrayList = ArrayList.Adapter(sc)
‘ Sort the inner StringCollection in reverse order through the wrapper.
al.Sort
al.Reverse
‘ Destroy the wrapper object, which isn’t necessary any longer.
al = Nothing

The temporary ArrayList object works as a wrapper for the inner String-
Collection object, so all the operations you perform on the ArrayList are actually
carried out in the StringCollection object instead.

The StringDictionary class, a lightweight version of the Hashtable object,
takes only string keys and values. It exposes only the IEnumerable interface (to
support For Each loops) and the following properties and methods: Item,
Count, Add, Remove, Clear, ContainsKey, ContainsValue, Keys, and Values. The
StringDictionary object compares keys in case-insensitive mode and throws an
exception if you add two elements whose keys differ only in case:

Reading 4 Arrays, Lists, and Collections 103

Dim sd As New System.Collections.Specialized.StringDictionary
sd.Add(“Ann", “Marketing”)
sd.Add(“Joe", “Sales”)
sd.Add(“Robert", “Administration”)

Dim de As DictionaryEntry
For Each de In sd

Console.WriteLine(“{0} = {1}", de.Key, de.Value)
Next

The System.Collections.Specialized namespace offers two more light-
weight classes: ListDictionary and NameValueCollection. The ListDictionary
class is a lightweight implementation of the IDictionary interface. It offers a sub-
set of the properties and methods of the Hashtable object but should be used
only for very small sets of elements because its performance degrades with
more than 10 elements. This object can take both object keys and object values.

The NameValueCollection class is a lightweight sorted collection of strings
that can be retrieved by their key or index. Its peculiarity is the capability to
store multiple string values under the same key.

Custom Collection and Dictionary Classes
You can create your own collection classes by implementing the IEnumerable
interface for adding support for the For Each statement. In most cases, however,
creating a collection class is as simple as inheriting from one of the special
abstract classes that the .NET Framework kindly provides. These classes pro-
vide much of the functionality you need in a collection-like object, and you
simply have to add the missing pieces. In this section, I’ll describe three such
objects: the CollectionBase class, for implementing full-featured collection
classes; the ReadOnlyCollectionBase class, which is more convenient for collec-
tion classes with fixed membership (that is, collections you can’t add items to or
remove items from); and the DictionaryBase class, for implementing dictionary-
like objects.

The ReadOnlyCollectionBase Abstract Class
Let’s start with a simple collection with fixed membership that contains all the
powers of 2, up to a given maximum exponent whose value is passed in the
collection’s constructor. This class inherits from the ReadOnlyCollectionBase
abstract class, and its code for this class couldn’t be simpler:

Class PowersOfTwoCollection
Inherits System.Collections.ReadOnlyCollectionBase

(continued)

104 Destination Visual Basic .NET

Sub New(ByVal MaxExponent As Integer)
MyBase.New()

’ Fill the inner ArrayList object.
Dim index As Integer
For Index = 0 To MaxExponent

’ InnerList is a protected member of the base class.
InnerList.Add(2 ^ Index)

Next
End Sub

’ Add support for the Item element (read-only).
Default ReadOnly Property Item(ByVal Exponent As Integer) As Long

Get
Return CLng(InnerList.Item(Exponent))

End Get
End Property

End Class

InnerList is a protected property through which the derived class can
access the internal ArrayList object that actually contains the values. You refer-
ence this internal ArrayList both when you’re loading values in the constructor
method and when you’re returning them in the Item property.

In this specific example, the Item property is marked ReadOnly because a
client isn’t supposed to change the powers of 2 once the collection has been
initialized. But don’t confuse this ReadOnly attribute with the fact that the col-
lection inherits from ReadOnlyCollectionBase: when applied to a collection,
read-only means that the collection has a fixed size, not that individual ele-
ments aren’t writable. Note that the Item property returns a Long data type,
rather than the Object data type, as all default collections do: in fact, one of the
main reasons for implementing a custom collection class is to make it strongly
typed. The following code snippet uses the collection just created:

‘ Display powers of 2 up to 2^20.
Dim powers As New PowersOfTwoCollection(20)
‘ The Count property is provided by the base class.
Console.WriteLine(powers.Count) ’ => 21

‘ For Each support is also provided by the base class.
Dim n As Long
For Each n In powers

Console.WriteLine(n)
Next

‘ Assign the value of 2^15 to a variable.
‘ (No casting is required because the collection is strongly typed.)
Dim lngValue As Long = powers(15)

Reading 4 Arrays, Lists, and Collections 105

The CollectionBase Abstract Class
You can create a regular read/write, strongly typed collection by inheriting a
class from CollectionBase: you just need to implement an Add method that
takes an argument of the expected type, and an Item property that sets or
returns an element. The following code defines a simple Square class and a
SquareCollection collection class:

Class Square
Public Side As Single

’ A simple constructor
Sub New(ByVal side As Single)

Me.Side = side
End Sub

End Class

‘ A collection object that can store only Square objects
Class SquareCollection

Inherits System.Collections.CollectionBase

’ The Item property sets or returns a Square object.
Default Property Item(ByVal index As Integer) As Square

Get
Return CType(InnerList.Item(index), Square)

End Get
Set(ByVal Value As Square)

InnerList.Item(index) = Value
End Set

End Property

’ You can add only Square objects to this collection.
Sub Add(ByVal value As Square)

InnerList.Add(value)
End Sub

End Class

The SquareCollection class doesn’t need to override the RemoveAt
method because this method doesn’t take or return a typed object, and there-
fore the base class can implement it:

Dim squares As New SquareCollection()
squares.Add(New Square(10))
squares.Add(New Square(20))
squares.Add(New Square(30))

‘ The RemoveAt method is provided by the base class.
Squares.RemoveAt(0)

106 Destination Visual Basic .NET

You aren’t limited to the members that a generic collection exposes. For
example, you might add a Create method that works as a constructor for a
Square object that’s then added to the collection. (Methods like this are also
called factory methods.)

’ ...(Add this method to the SquareCollection class.)...
Function Create(ByVal Side As Single) As Square

Dim sq As New Square(Side)
Add(sq)
Return sq

End Function

With this factory method, adding new elements to the collections is even
simpler:

squares.Create(40)
squares.Create(50)

The CollectionBase abstract class exposes several protected methods that
let the derived class take control when an operation is performed on the collec-
tion. For example, say that the SquareCollection class exposes the TotalArea
read-only property, which contains the sum of the area of all the squares in the
collection. You must modify the Add method to implement this new property:

’ Keep track of the total area of squares.
Dim m_TotalArea As Single

Sub Add(ByVal value As Square)
InnerList.Add(value)
’ Keep the total area updated.
m_TotalArea += (value.Side * value.Side)

End Sub

ReadOnly Property TotalArea() As Single
Get

Return m_TotalArea
End Get

End Property

The next problem to solve is that the m_TotalArea variable must be
updated when an element is removed from the collection. You achieve this
behavior by overriding the OnRemoveComplete protected method, which runs
after an item has been removed from the collection:

Protected Overrides Sub OnRemoveComplete(ByVal index As Integer, _
ByVal value As Object)
’ Get a reference to the square being removed.
Dim sq As Square = CType(value, Square)

Reading 4 Arrays, Lists, and Collections 107

’ Keep the total area updated.
m_TotalArea -= (sq.Side * sq.Side)

End Sub

These are the protected methods you can override in classes that derive
from CollectionBase: OnInsert, OnInsertComplete, OnClear, OnClearComplete,
OnRemove, OnRemoveComplete, OnSet, OnSetComplete, and OnValidate.

The DictionaryBase Abstract Class
Now that you know the mechanism, you should have no problem grasping
how you can use the DictionaryBase class to implement a strongly typed, cus-
tom dictionary-like object. Again, all you have to do is provide your custom Add
and Item procedures, and reference the protected Dictionary object that you
inherit from DictionaryBase. The following example creates a SquareDictionary
object that can manage Square objects and associate them with a string key:

Class SquareDictionary
Inherits System.Collections.DictionaryBase

Sub Add(ByVal key As String, ByVal value As Square)
Dictionary.Add(key, value)

End Sub

Function Create(ByVal key As String, ByVal side As Single) As Square
Create = New Square(side)
’ Use the function name as a local variable.
Dictionary.Add(key, Create)

End Function

Default Property Item(ByVal key As String) As Square
Get

Return CType(Dictionary.Item(key), Square)
End Get
Set(ByVal Value As Square)

Dictionary.Item(key) = Value
End Set

End Property
End Class

Here’s a sample of client code:

Dim sq As New SquareDictionary()
sq.Create(“First", 10)
sq.Create(“Second", 20)
sq.Create(“Third", 30)

Console.WriteLine(sq(“Second”).Side) ’ => 20

108 Destination Visual Basic .NET

The custom SquareDictionary class should be completed with properties
such as Values and Keys, and a few other methods that aren’t implemented in the
DictionaryBase class. As with the CollectionBase class, you can intervene when
an operation is performed on the inner dictionary object through several pro-
tected methods, such as OnClear, OnClearComplete, OnGet, OnInsert, OnInsert-
Complete, OnRemove, OnRemoveComplete, OnSet, and OnSetComplete.

At this point, you have added many new classes to your data structure
arsenal and you should have become more familiar with how things work in
the .NET world, such as how you use inheritance to derive new and more pow-
erful data classes. It’s now time to start working with other classes in the .NET
Framework, such as files and directories.

109

Reading 5

Windows Forms
Applications

In spite of the potential that Visual Basic has now in areas such as component
and Internet programming, I expect that many developers will continue to use
the language to create standard Win32 applications. The .NET Framework
offers a lot in this area and lets you create applications with a rich user interface
without the annoyances and limitations of previous language versions. To qual-
ify as a Visual Basic 6 user-interface wiz, you had to learn a lot of tricks and
advanced techniques, such as tons of Windows API calls and subclassing. Now
you need only to use correctly the classes and methods defined in the Sys-
tem.Windows.Forms namespace.

Form Basics
A Visual Basic .NET form is nothing but a class that inherits from the Sys-
tem.Windows.Forms.Form class; it isn’t special in comparison with other .NET
classes. For example, there’s no global variable named after the form class (as
happens in Visual Basic 6), so you can’t display an instance of a form named
Form1 by simply executing Form1.Show. Instead, you have to correctly create
an instance of the proper form class, as in this code:

Dim frm As New Form1
frm.Show

From Programming Microsoft Visual Basic .NET by Francesco Balena. pp. 675-691. (Redmond: Microsoft
Press. 2002.) Copyright © 2002 by Francesco Balena.

110 Destination Visual Basic .NET

The Form Designer
Visual Studio .NET comes with a designer similar to the one provided with ear-
lier versions of Visual Basic. Behind the scenes, however, things work very dif-
ferently. The Visual Studio .NET designer is a sophisticated code generator:
when you set a control’s property in the Properties window, you’re just creating
one or more Visual Basic statements that assign a value to that property after
the form has been created.

Code Generation
For example, the code that follows is generated for a form named Form1 that
contains a Label, a TextBox, and a Button control. (See Figure 5-1.) The
designer encloses the generated code in a collapsed #Region so that you can’t
modify it accidentally:

Public Class Form1
Inherits System.Windows.Forms.Form

#Region “ Windows Form Designer generated code “

Public Sub New()
MyBase.New()

’This call is required by the Windows Form Designer.
InitializeComponent()

’Add any initialization after the InitializeComponent() call.

End Sub

’Form overrides dispose to clean up the component list.
Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)

If disposing Then
If Not (components Is Nothing) Then

components.Dispose()
End If

End If
MyBase.Dispose(disposing)

End Sub
Friend WithEvents btnOK As System.Windows.Forms.Button
Friend WithEvents txtValue As System.Windows.Forms.TextBox
Friend WithEvents lblMessage As System.Windows.Forms.Label

’Required by the Windows Form Designer
Private components As System.ComponentModel.Container

Reading 5 Windows Forms Applications 111

’NOTE: The following procedure is required by the Windows Form Designer.
’It can be modified using the Windows Form Designer.
’Do not modify it using the code editor.
<System.Diagnostics.DebuggerStepThrough()> _
Private Sub InitializeComponent()

Me.btnOK = New System.Windows.Forms.Button()
Me.txtValue = New System.Windows.Forms.TextBox()
Me.lblMessage = New System.Windows.Forms.Label()
Me.SuspendLayout()
’
’lblMessage
’
Me.lblMessage.Location = New System.Drawing.Point(16, 16)
Me.lblMessage.Name = “lblMessage"
Me.lblMessage.Size = New System.Drawing.Size(352, 40)
Me.lblMessage.TabIndex = 0
Me.lblMessage.Text = “Type your value here"
’
’txtValue
’
Me.txtValue.Location = New System.Drawing.Point(16, 64)
Me.txtValue.Name = “txtValue"
Me.txtValue.Size = New System.Drawing.Size(352, 20)
Me.txtValue.TabIndex = 1
Me.txtValue.Text = “"
’
’btnOK
’
Me.btnOK.Location = New System.Drawing.Point(400, 16)
Me.btnOK.Name = “btnOK"
Me.btnOK.Size = New System.Drawing.Size(88, 32)
Me.btnOK.TabIndex = 2
Me.btnOK.Text = “OK"
’
’Form1
’
Me.AcceptButton = Me.btnOK
Me.AutoScaleBaseSize = New System.Drawing.Size(5, 13)
Me.ClientSize = New System.Drawing.Size(496, 141)
Me.Controls.AddRange(New System.Windows.Forms.Control() _

{Me.lblMessage, Me.txtValue, Me.btnOK})
Me.Name = “Form1"
Me.Text = “First Windows Forms example"
Me.ResumeLayout(False)

End Sub
#End Region

End Class

112 Destination Visual Basic .NET

F16CN01

Figure 5-1. A simple form in the Visual Studio form designer.

The listing shows a few interesting features of the Form class:

■ The Sub New procedure is where you can put initialization code; it
broadly corresponds to the Form_Initialize event in Visual Basic 6.

■ The Sub Dispose procedure is where you put cleanup code; it corre-
sponds to the Visual Basic 6 Form_Terminate event.

■ A control on the form is just an object of the proper control class,
which the form instantiates in the InitializeComponent procedure
and assigns to a WithEvents variable named after the control itself.
By default, control variables are Friend members of the form class,
but you can change this by assigning a different scope to the con-
trol’s Modifiers property in the Properties window.

■ Property values are set through regular assignments in code; Visual
Basic .NET source code modules don’t contain hidden sections that
you can’t load in Visual Studio’s editor.

■ After assigning property values, the code produced by the designer
inserts individual control objects into the form’s Controls collection,
using a single AddRange method for best performance.

I’ll talk about other interesting new properties—for example, the Size and
Location properties—later in this chapter.

New Designer Features
The Visual Studio .NET form designer is virtually identical to the designer in
Visual Basic 6, with a few interesting new features. For example, controls that
are invisible at run time are displayed on the component tray, near the bottom
border of the designer. This area isn’t normally visible until you drop an invisi-
ble control, such as a Timer control, on the designer.

You can save some time by arranging the TabIndex property in a visual
manner, using the Tab Order command on the View menu. This command dis-
plays little numbered labels over each control, and you can create the correct

Reading 5 Windows Forms Applications 113

TabIndex sequence by simply clicking on each control in the order you want it
to appear in relation to the others. As you see in Figure 5-2, controls that are
themselves a container have a TabIndex subsequence. You terminate the Tab
Order command by pressing the Esc key.

F16CN02

Figure 5-2. Arrange the TabIndex property using the Tab Order
command.

Another timesaving feature is the ability to resize multiple controls by
using the mouse. Just select multiple controls—by clicking on each one while
pressing the Ctrl or the Shift key, or by pressing the Ctrl+A key combination to
select all the controls on the form—and then use the mouse to resize one of
them: all the selected controls will be sized accordingly. (You can’t do this in
Visual Basic 6.)

Finally, note that you can lock each individual control (so as not to acci-
dentally move or resize it with the mouse) by setting its Locked property to
True in the Properties window. Visual Basic 6 allows you to lock only all con-
trols or none. (You can still lock controls Visual Basic 6–style in Visual Basic
.NET by using the Lock Controls command on the Format menu.)

The Windows Forms Class Hierarchy
The classes in the System.Windows.Forms namespace make up a fairly com-
plex hierarchy, at the root of which is the System.Windows.Forms.Control class.
(See Figure 5-3.) The Control class inherits from the System.Component-
Model.Component class, which represents an object that can be placed on a
container.

114 Destination Visual Basic .NET

F16CN03

Figure 5-3. A partial view of the Windows Forms class hierarchy.

You might be surprised to see that the Form object is a descendant of the
Control object; you might have expected a relationship in the opposite direc-
tion. Keep in mind that this is an inheritance diagram, not a containment dia-
gram. The Control, ScrollableControl, and ContainerControl classes are generic
objects that expose properties that are inherited by more specific controls.
These classes aren’t abstract classes, and you can actually create an instance of
each class, even though there’s no point in doing so. (You must do this from
code, however, because these classes don’t appear in the Toolbox.)

Even if you don’t work with these classes in code directly, it’s interesting
to see the functionality of each class because it’s inherited by other classes fur-
ther down the hierarchy.

The Control class defines a generic Windows Forms control, which is an
object that can be hosted in Visual Studio’s Toolbox and placed on the form
designer’s surface. It has methods such as BringToFront and SendToBack (for
controlling Z-ordering), properties such as Location and Size (for defining posi-
tion and dimension), and many others. Many actual controls that don’t require
advanced functionality—for example, the Label and PictureBox controls—
inherit directly from the System.Windows.Forms.Control class. (Note that the
Visual Basic .NET PictureBox control can’t work as a container for other con-
trols.) But even a few sophisticated controls inherit directly from Control,
including the DataGrid control.

The ScrollableControl class inherits all the members of the Control class, to
which it adds the ability to scroll its own contents. It exposes properties such as
AutoScrollPosition and methods such as ScrollControlIntoView. The Panel con-
trol—which replaces the Visual Basic 6 Frame control—inherits directly from
the ScrollableControl class.

The ContainerControl class represents an object that can contain other con-
trols. It exposes properties such as ActiveControl and BindingContext, and the
Validate method. The Form class inherits directly from the ContainerControl class.

�������

������	
���������

����	�����������

���

�����������

Reading 5 Windows Forms Applications 115

Windows Forms Controls
The System.Windows.Forms.dll library includes 46 controls, most of which are
similar to their Visual Basic counterparts and most of which have retained the
same names. (See Figure 5-4.)

F16CN04

Figure 5-4. All the Windows Forms controls as they appear in the
Visual Studio Toolbox.

The Label, Button, TextBox, CheckBox, RadioButton, PictureBox, ListBox,
ComboBox, HScrollBar, VScrollBar, and Timer controls are virtually identical to
the intrinsic controls in Visual Basic 6, but they often have additional features
and different method syntax. CheckedListBox controls replace ListBox controls
with the Style property set to 1-CheckBox. The old Frame control is gone and
has been replaced by two new controls, GroupBox and Panel. Both these con-
trols work as containers for other controls, but the Panel control is also scroll-
able. In a difference from previous Visual Basic versions, you now have two
explicit menu controls, MainMenu and ContextMenu.

The majority of Windows Common Controls are available in the default
Toolbox, so you don’t have to reference another library. This group includes
the following controls: ImageList, ListView, TreeView, ProgressBar, TrackBar
(SlideBar), RichTextBox, TabControl (TabStrip), ToolBar, StatusBar, DateTime-
Picker, and MonthCalendar (MonthView). (The names in parentheses are the
old Visual Basic 6 versions.)

116 Destination Visual Basic .NET

The new NumericUpDown control replaces the combination of a TextBox
control and an UpDown control. The new DomainUpDown is like a single-row
list box. The DataGrid control has more or less the same functionality as the old
control of the same name. The old CommonDialog control has been replaced
by six more-specific controls: OpenFileDialog, SaveFileDialog, FontDialog,
ColorDialog, PrintDialog, and PageSetupDialog.

There are also a few brand-new controls. The LinkLabel control is an
enhanced label control that can be used to implement Web-like hyperlinks to
other portions of the application or to URLs on the Internet. The Splitter control
lets you create resizeable regions on your form. The NotifyIcon control enables
your program to create those little icons in the Windows taskbar and to react to
mouse actions on them.

The PrintPreviewDialog control works together with the PrintPreviewCon-
trol object to provide a WYSIWYG preview of printed documents. You can sim-
plify actual printing operations by using the PrintControl object, and you can
create complex reports using the CrystalReportViewer control.

Finally, there are three controls known as extender provider controls
because they augment the functionality of other controls on the form. The Tool-
Tip control displays a tooltip message when the mouse hovers over any other
control. The HelpProvider control provides help functionality (and therefore
replaces the help functionality previously in the CommonDialog control). The
ErrorProvider control can display a red icon beside controls that don’t pass
input validation.

A few Visual Basic 6 controls aren’t available any longer: DriveList, Dir-
ListBox, FileListBox, OLE container, UpDown, Animation, the two flat scroll
bars, MSFlexGrid, and a bunch of others. Windows Forms don’t support win-
dowless controls, which explains why the Line and Shape controls aren’t sup-
ported any longer. The Image control is also gone, but its lightweight
capabilities have been embedded in the new PictureBox control. All the Data,
RDO Data, and ADO Data controls have been dumped (even though Windows
Forms still support data binding).

Common Properties
Because all controls inherit most of their functionality from System.Windows.
Forms.Control, they expose a similar set of properties. I gathered in Table 5-1
the properties that the majority of controls have in common. The third column
lists the corresponding Visual Basic 6 properties, if there are any, to help you in
understanding what each property does and to speed up porting of applications
from previous language versions.

Reading 5 Windows Forms Applications 117

Table 5-1 Properties Common to Most Controls

Category Name VB6 Property Description

Size and
position

Location Left and Top The location of the object,
expressed as a Point object that
exposes the X and Y properties.

Size Width and Height The dimension of the object. The
Size object exposes the Width
and Height properties.

Left, Top, Width,
Height

Left, Top, Width,
Height

Individual coordinates and
dimensions of the control.

Right Left+Width The X coordinate of the right bor-
der.

Bottom Top+Height The Y coordinate of the bottom
border.

Bounds The rectangle that defines posi-
tion and size of the control in its
container’s coordinate system.

ClientRectangle The client rectangle of the
control.

ClientSize A Size object that defines the
dimension of the client rectangle.

Anchor From which edges of the con-
tainer this control maintains a
fixed distance (bit-coded).

Dock Which borders of this control are
docked to its container
(bit-coded).

Parent Container The parent for this control.

Text Text Caption or Text The text string displayed in the
control.

Font Font The font used to display text in
the control. Font properties are
Name, Size, Bold, Italic, Strikeout,
Underline, and Unit. (Unit can be
Point, Pixel, Inch, Millimeter,
Document, or World.)

RightToLeft RightToLeft True if the control should draw
text right-to-left for right-to-left
(RTL) languages.

(continued)

118 Destination Visual Basic .NET

IMEMode The Input Method Editor status of
the object when selected. (Used
for alphabets such as
Japanese, Chinese, and Korean.)

Color and
graphic

ForeColor ForeColor The foreground color.

BackColor BackColor The background color.

Focus TabIndex TabIndex The index in tab order for this
control.

TabStop TabStop True if the user can use the Tab
key to give focus to the control.

Visible Visible True if the control is visible or
hidden.

Enabled Enabled True if the control is enabled.

Cursor The Cursor object that represents
the mouse state, position, and
size.

ShowFocusCues True if the user interface is in a
state to show focus rectangles
(read-only).

ShowKeyboard
Cues

True if the user interface is in a
state to show keyboard accelera-
tors (read-only).

CausesValidation CausesValidation True if the control causes a
validation event.

Keyboard
and mouse

ModifierKeys The current state of Shift, Ctrl,
and Alt keys (bit-coded).

MouseButtons The current state of mouse
buttons (bit-coded).

MousePosition The current mouse position in
screen coordinates (returns a
Point object).

Accessibility AccessibleName The name reported to accessibil-
ity clients.

Accessible
Description

The description reported to
accessibility clients.

AccessibleRole The role reported to accessibility
clients (Default, Alert, Text,
Graphic, Sound, and so on).

Table 5-1 Properties Common to Most Controls (continued)

Category Name VB6 Property Description

Reading 5 Windows Forms Applications 119

AccessibleDefault-
ActionDescription

The description of the default
action of the control.

IsAccessible True if this control should be
accessible to accessibility
applications.

Creation Created True if the control has been created.

Disposing True if the control is being
disposed of (destroyed).

Disposed True if the control has been
disposed of (destroyed).

Miscellaneous Name Name The name of the control.

AllowDrop OLEDropMode True if the control receives drag-
and-drop notifications.

ContextMenu The pop-up menu to display
when the user right-clicks on the
control.

ProductName The name of this specific
component.

ProductVersion The version of this specific
component.

CompanyName The company name of this
specific component.

Design only Modifiers The visibility level of the control
(Public, Protected, Friend, or
Private).

Locked True if the control can’t be
resized or moved on its
container.

Run time only Focused ActiveControl (of
parent form)

True if the control has the input
focus.

Handle hWnd The handle of the Windows control.

CanFocus True if the control can receive the
focus.

CanSelect True if the control can be
selected.

Capture True if the control has captured
the mouse and receives all mouse
events (read/write).

Table 5-1 Properties Common to Most Controls (continued)

Category Name VB6 Property Description

120 Destination Visual Basic .NET

Common Methods
Table 5-2 lists the most important methods in common among controls. Once
again, I indicated the corresponding Visual Basic 6 method if possible.

Table 5-2 Methods Common to Most Controls

Category Name VB6 Method Description

Size and
position

BringToFront ZOrder Brings the control to the
front of the Z-order.

SendToBack ZOrder 1 Sends the control to the
back of the Z-order.

FindForm Parent Returns the form this
control is on.

GetContainer Container Returns the container for
the control.

GetContainerControl Container Returns the closest Con-
tainerControl in the con-
trol’s chain of parent
controls and forms.

PointToClient(point) Converts a point from
screen coordinates to cli-
ent coordinates.

PointToScreen(point) Converts a point from
client coordinates to
screen coordinates.

RectangleToClient(rect) Converts a rectangle
from screen coordinates
to client
coordinates.

RectangleToScreen(rect) Converts a rectangle
from client coordinates
to screen coordinates.

SetBounds(left,top,width,
height)

Move Sets the bounding
rectangle (same as
assigning the Bounds
property).

SetSize(width,height) Move Sets the size of the
control (same as assign-
ing the Size
property).

SetClientSizeCore
(width,height)

Sets the client size of the
control.

Reading 5 Windows Forms Applications 121

Child controls Scale(horiz [,vert]) Resizes the control and
its children according to
the specified ratio val-
ues. (If only one value is
provided, it’s used as
both vertical and hori-
zontal ratio.)

SetNewControls(ctrlarray) Sets the array of child
controls contained in this
control.

GetChildAtPoint(point) Returns the child control
at the specified
client coordinates.

Contains(ctrl) Checks whether this con-
trol contains another
control.

ActivateControl(ctrl) Activates a child control.

Appearance Invalidate Refresh Invalidates the control
and forces a repaint.

Refresh Refresh Forces the control to
invalidate and immedi-
ately repaint itself and its
children.

Update Refresh Forces the control to
repaint any currently
invalid areas.

Show Shows the control; same
as setting Visible prop-
erty to True.

Hide Hides the control; same
as setting Visible prop-
erty to False.

ResetForeColor Resets the ForeColor
property to reflect the
parent’s foreground
color.

ResetBackColor Resets the BackColor
property to reflect the
parent’s background
color.

Table 5-2 Methods Common to Most Controls (continued)

Category Name VB6 Method Description

(continued)

122 Destination Visual Basic .NET

Common Events
Table 5-3 lists all the events common to the majority of controls, together with
the corresponding Visual Basic 6 event if there is one. Keep in mind that all
events receive exactly two arguments—sender and xxxxEventArgs—where the
former is a reference to the control raising the event and the latter is an object
that might contain additional information about the event. The descriptions of
individual events explain which values are passed in this second argument, if
any. Notice that you can create an event template in Visual Studio by selecting
the (Base Class Events) element in the leftmost combo box on the right.

ResetCursor Resets Cursor property to
its default value.

ResetText Resets the Text property
to its default value.

Focus Focus SetFocus Attempts to give input
focus to this control.

ContainsFocus Returns True if the con-
trol or one of its child
controls has the focus.

GetNextControl Returns the next control
in tab order.

Select Selects this control.

SelectNextControl Gives input focus to next
control in tab order.

Miscellaneous CallWndProc(msg,wParam,
lParam)

Dispatches a message to
the control’s window
procedure directly.

CreateControl Forces the creation of
the control, including its
child controls.

CreateGraphics Returns the Graphics
object that can be used
to draw on the control’s
surface.

Dispose Destroys the control.

DoDragDrop
(allowedEffects)

OLEDrag Begins a drag operation;
the argument deter-
mines which drag opera-
tion can occur.

Table 5-2 Methods Common to Most Controls (continued)

Category Name VB6 Method Description

Reading 5 Windows Forms Applications 123

Table 5-3 Events Common to Most Controls

Category Name VB6 Event Description

Focus GotFocus GotFocus The control receives the
focus.

LostFocus LostFocus The control loses the focus;
this event occurs after the
Validated event.

Enter The control is entered; this
event occurs before the Got-
Focus event.

Leave The control is left; this event
occurs before the Validating
event.

Validating Validate The control is being vali-
dated.

Validated The control has completed
validation.

ChangeUICues Focus cue, keyboard cue, or
both cues have changed (use-
ful only when creating cus-
tom controls).

Keyboard and
Mouse

Click Click The control is clicked.

DoubleClick DblClick The control is double-clicked.

MouseDown MouseDown A mouse button has been
pressed; it receives Button,
Clicks, Delta, X, and Y values.

MouseUp MouseUp A mouse button has been
released; it receives the same
values as MouseDown.

MouseMove MouseMove The mouse is moved over the
control; it receives the same
values as MouseDown.

MouseWheel The mouse wheel has been
rotated while the control has
the focus; it receives the same
values as MouseDown.

MouseEnter The mouse enters the control.

MouseLeave The mouse leaves the control.

MouseHover The mouse hovers over the
control.

(continued)

124 Destination Visual Basic .NET

KeyDown KeyDown A key is pressed while the
control has the focus; it
receives Alt, Control, Shift,
Modifiers, KeyCode, KeyData,
and Handled values.

KeyUp KeyUp A key is released while the
control has the focus; it
receives the same values as
KeyDown.

KeyPress KeyPress A printable key is pressed
while the control has the
focus; it receives KeyChar
and Handled values.

HelpRequested The user requests help for the
control.

Drag and
drop

DragDrop OLEDragDrop A drag-and-drop operation is
complete; it receives
AllowedEffect, Data, Effect,
KeyState, X, and Y values.

DragEnter OLEDragOver, with
state = vbEnter

An object is dragged into the
control’s border; it receives
the same values as DragDrop.

DragLeave OLEDragOver, with
state = vbLeave

An object is dragged out of
the control’s border; it
receives the same values as
DragDrop.

DragOver OLEDragOver, with
state = vbOver

An object is being dragged
over the control’s border; it
receives the same values as
DragDrop.

GiveFeedback OLEGive
Feedback

Occurs during a drag opera-
tion; it gives the source con-
trol a chance to change the
cursor’s appearance.

QueryContinue-
Drag

Occurs during a drag opera-
tion; it gives the source con-
trol a chance to cancel the
operation.

Appearance Paint Paint The control is being repainted;
it receives ClipRectangle and
Graphics values.

Table 5-3 Events Common to Most Controls (continued)

Category Name VB6 Event Description

Reading 5 Windows Forms Applications 125

Invalidated The control has been invali-
dated; it receives an Invalid-
Rect value.

Move The control has been moved.

Resize Resize The control is resized.

Layout Occurs when a control has to
lay out its child controls.

Container
controls

ControlAdded A new control is added; it
receives a Controlvalue

ControlRemoved A control is removed; it
receives a Control argument.

Miscellaneous HandleCreated A handle is created for the
control.

HandleDestroyed The control’s handle is
destroyed.

PropertyChanged A control’s property has been
changed; it receives a
PropertyName value.

Table 5-3 Events Common to Most Controls (continued)

Category Name VB6 Event Description

126 Destination Visual Basic .NET

❇❇❇

Using Menus
Menus allow users to access critical, top-level commands and functions in a
familiar, easy to understand interface. A well designed menu that exposes your
application’s functionality in a logical, consistent manner will make your appli-
cation easy to learn and use. If you offer a poorly designed menu, users will
avoid it whenever possible and work with it reluctantly only when necessary.

When designing menus, you should take into account the logical flow of
the application. Menu items should be grouped according to related function-
ality. Using access keys to enable keyboard shortcuts to menu items will also
make the use of your application easier.

Creating Menus at Design Time
With the MainMenu component, you can rapidly and intuitively create menus
for your forms at design time. The MainMenu component contains and man-
ages a collection of MenuItem controls, which form the visual element of a
menu at run time.

Using the MainMenu Component
The MainMenu control allows you to do the following at design time:

■ Create new menus and menu bars.

■ Add new menu items to existing menus.

■ Modify the properties of menus and menu items via the Properties
window.

■ Create event handlers to handle the Click event and other events for
menu items.

To create a new menu, add a MainMenu component to your form. The
component appears in the component tray, and a box with the text Type Here
appears in the menu bar of the form. The menu appears on your form as it would
at run time. To create a menu item, type in the box where indicated. As you type,
additional boxes are created beneath and to the right of the first menu item.

Adapted from Developing Windows-Based Applications with Microsoft Visual Basic .NET and Microsoft
Visual C# .NET. pp. 75-83. (Redmond: Microsoft Press. 2002.) Copyright © 2002 by Microsoft Corporation.

Reading 5 Windows Forms Applications 127

Submenus are created the same way. If you want to create a submenu,
simply type an entry to the right of the menu item that you want to expand.
Figure 5-5 shows how to use the MainMenu component.

F02WA09.epsFigure 5-5. Creating menus with the MainMenu component

When an item is added to a menu, the designer creates an instance of a
MenuItem object. Each MenuItem object has its own properties and members
that can be set in the Properties window. The Text property represents the text
that will be displayed at run time and is automatically set to the text that you
type. The Name property indicates how you will refer to this object in code and
is automatically given a default value that can be changed if desired.

To create main menus at design time, follow these steps:

1. In the Toolbox, add a MainMenu component to the form either by
double-clicking the MainMenu tool or by dragging it onto the form.
A MainMenu component appears in the component tray.

2. In the designer, type the text for the first menu item in the box pre-
sented on the form’s menu bar. As additional boxes appear, add
additional menu items until the structure of your menu is complete.

3. In the Properties window, set any of the properties that you want to
change for your menu items.

4. In the Properties window of the form, make sure that the Menu
property of the form is set to the menu you want to display. If you
have multiple menus on a form, only the designated menu will be
displayed.

128 Destination Visual Basic .NET

Separating Menu Items
You can separate menu items with a separator, a horizontal line between items
on a menu. You can use separator bars to divide menu items into logical groups
on menus that contain multiple items, as shown in Figure 5-6. To add a separa-
tor to your menus, enter a hyphen as the text of a menu item at the point where
you want the separator to be.

F02WA10.epsFigure 5-6. Separator bars on menus

Menu Access and Shortcut Keys
You can enable keyboard access to your menus through the use of Access and
Shortcut keys.

Access Keys
Access keys allow the user to open a menu by pressing the Alt key and typing
a designated letter. When the menu is open, you can select a menu command
by pressing the Alt key and the correct access key. For example, in most pro-
grams the Alt+F key opens the File menu. When it is open, you can choose
Alt+N to create a new item. Access keys are displayed on the form as an under-
lined letter on the menu items.

You can use the same access key for different menu items as long as the
menu items are contained in different menu groups. For example, you might
want to use Alt+C to access the Close command on the File menu group and
the Copy command on the Edit menu group. You should avoid using the same
access key for multiple items on a menu group, such as using Alt+C for both the
Cut and the Copy commands of an Edit menu group. If you do use the same
access key combination for two items on a menu group, you will be able to use

Reading 5 Windows Forms Applications 129

the access key to toggle your selection between the items, but you will not be
able to select the item without pressing the Enter key.

To assign an access key to a menu item go to the designer and click the
menu item that you want to assign an access key. Type an ampersand (&) in
front of the desired letter for the access key.

Shortcut Keys
Shortcut keys enable instant access to menu commands and can be useful for
providing a keyboard shortcut for frequently used menu commands. Shortcut
key assignments can either be single keys—such as Delete, F1, or Insert—or
key combinations, such as Ctrl+A, Ctrl+F1, or Ctrl+Shift+X. When a shortcut key
is designated for a menu item, it is shown to the right of the menu item. The
shortcut key combination will not be displayed if the ShowShortcut property of
the menu item is set to false.

To assign a shortcut key, select the menu item for which you want to
enable a shortcut key and select the Shortcut property n the Properties window.
Choose the appropriate shortcut key combination from the drop-down menu.

Menu Item Events
You can create event handlers for menu items in the same manner in which you
create event handlers for other controls. The most frequently used event is the
Click event. The Click event handler should contain the code to be executed
when the menu item is clicked. This code will also execute when a shortcut key
combination is used.

The Select event is raised when a menu item is highlighted, either with the
mouse or through the use of access keys. You might create an event handler
that provides detailed help regarding the use of a menu command when
selected.

The Popup event is raised just before a menu item’s list is displayed. You
can use this event to enable and disable menu items at run time before the
menu is displayed.

Context Menus
Context menus are menus that appear when an item is right-clicked. You create
context menus with the ContextMenu component, which is edited in exactly
the same way as the MainMenu component. The ContextMenu appears at the
top of the form, and you can add menu items by typing them on the control.

Context menus are similar to main menus in many respects. Both contain
and manage a collection of menu item controls. You can enable shortcut keys
for menu items in a context menu, but not access keys. To associate a context
menu with a particular form or control, set the ContextMenu property of that
form or control to the appropriate menu.

130 Destination Visual Basic .NET

To create a context menu, follow these steps:

1. In the Toolbox, add a ContextMenu component to the form, either
by double-clicking the ContextMenu tool or by dragging it onto the
form. A ContextMenu component appears in the component tray.

2. In the designer, type the text for the first menu item in the box pre-
sented on the form’s menu bar. As additional boxes appear, add
additional menu items until the structure of your menu is complete.

3. In the Properties window, set any of the properties that you want to
change for your menu items.

4. Select the form or control you want to associate the context menu
with. In the Properties window for the control, set the ContextMenu
property to your context menu. The context menu will be displayed
at run time when the control is right-clicked. You can associate a sin-
gle context menu with several controls, but only one context menu
per control.

 Modifying Menus at Run Time
You can dynamically manipulate your menus to respond to run-time condi-
tions. For example, if your application is unable to complete a certain com-
mand, you can disable the menu item that calls that command. You can display
a check mark next to a menu item or a radio button to provide information to
the user; make menu items invisible at times that it might not be appropriate to
choose them. You can also add menu items at run time, and menus can be
cloned or merged with one another at run time.

Enabling and Disabling Menu Commands
Every menu item has an Enabled property. When this property is set to false,
the menu is disabled and does not respond to user actions. Access and shortcut
key actions are also disabled for this menu item, and it appears dimmed on the
user interface. The following code disables a menu item at run time.

Visual Basic .NET

MenuItem1.Enabled = False

Visual C#

menuItem1.Enabled = false;

Reading 5 Windows Forms Applications 131

Displaying Check Marks on Menu Items
You can use the Checked property to display a check mark next to a menu item,
such as displaying a check mark to indicate that a particular option has been
selected. Use the following code to select and clear a menu item.

Visual Basic .NET

‘ Checks the menu item
MenuItem1.Checked = True
‘ Unchecks the menu item
MenuItem1.Checked = False

Visual C#

// Checks the menu item
MenuItem1.Checked = true;
// Unchecks the menu item
MenuItem1.Checked = false;

Displaying Radio Buttons on Menu Items
A radio style button can be displayed instead of a check mark. To display radio
buttons, set the RadioCheck property for the menu item to true. The menu item
will then display a radio button instead of a check mark when the Checked
property is set to true. When the Checked property is false, neither a check
mark nor a radio button will appear.

Radio buttons are frequently used to display exclusive options, such as the
choice of background colors. If you want to display radio buttons next to mutu-
ally exclusive options, you must write code that clears other options when one
option is selected.

Making Menu Items Invisible
You can make your menu items invisible by setting the Visible property to false.
Use this property to modify your menus at run time in response to changing con-
ditions. The following code demonstrates how to make a menu item invisible.

Visual Basic .NET

MenuItem1.Visible = False

Visual C#

menuItem1.Visible = false;

Note that making a menu item invisible at run time removes it from the
menu bar. Any submenus contained by that menu item will also be inaccessible.

132 Destination Visual Basic .NET

Cloning Menus
You can make a copy of existing menu items at run time. For example, you
might want to clone an Edit menu item (and its associated submenus) from a
main menu to serve as a context menu for a control. You can create a new
menu item by using the CloneMenu method. It creates a copy of the specified
menu item and all of its members, including contained menu items, properties,
and event handlers. Thus, all events that are handled by the original menu item
will be handled in the same way by the cloned menu item. The newly created
context menu can then be assigned to a control. Use the following code to
clone a menu item as a new context menu at run time.

Visual Basic .NET

‘ The following example assumes the existence of a menu item called
‘ fileMenuItem and a control called myButton
‘ Declares and instantiates a new context menu
Dim myContextMenu as New ContextMenu()
‘ Clones fileMenuItem and fills myContextMenu with the cloned item
myContextMenu.MenuItems.Add(fileMenuItem.CloneMenu())
‘ Assigns the new context menu to myButton
myButton.ContextMenu = myContextMenu

Visual C#

// The following example assumes the existence of a menu item called
// fileMenuItem and a control called myButton
// Declares and instantiates a new context menu
ContextMenu myContextMenu = new ContextMenu();
// Clones fileMenuItem and fills myContextMenu with the cloned item
myContextMenu.MenuItems.Add(fileMenuItem.CloneMenu());
// Assigns the new context menu to myButton
myButton.ContextMenu = myContextMenu;

Merging Menus at Run Time
At times, you might want to display multiple menus as a single menu at run
time. The MergeMenu method allows you to combine menus and display them
as one. You can merge multiple main or context menus with each other, merge
menus with menu items, or merge multiple menu items. To merge menus at run
time, call the MergeMenu method of the menu or menu item that will be dis-
played. Supply the menu or menu item to be incorporated as the argument.

Visual Basic .NET

MainMenu1.MergeMenu(ContextMenu1)

Reading 5 Windows Forms Applications 133

Visual C#

mainMenu1.MergeMenu(contextMenu1);

Adding Menu Items at Run Time
You can dynamically add new items to an existing menu at run time. For exam-
ple, you might add menu items that display the pathnames of the most recently
opened files. New menu items will not have any event handlers associated with
them, but you can specify a method to handle the Click event as an argument
to the constructor of the new menu item. This method must be a Sub (void)
method and have the same signature as other event handlers. The following
code is an example of an appropriate method.

Visual Basic .NET

Public Sub ClickHandler (ByVal sender As Object, ByVal e As _
System.EventArgs)
‘ Implementation details omitted

End Sub

Visual C#

public void ClickHandler (object sender, System.EventArgs e)
{

// Implementation details omitted
}

To add menu items at run time, begin by declaring and instantiating a new
menu item. You can specify a method to handle the Click event at this time if
you choose. Next add the new method to the menuitems collection of the menu
you want to modify.

Visual Basic .NET

‘ This example assumes the existence of a method called myClick
‘ which has the correct event handler signature
Dim myItem as MenuItem
myItem = New MenuItem(“Item 1", New EventHandler(AddressOf myClick))

MainMenu1.MenuItems.Add(myItem)

Visual C#

// This example assumes the existence of a method called myClick
// which has the correct event handler signature
MenuItem myItem;
myItem = new MenuItem(“Item 1", new EventHandler(myClick));

MainMenu1.MenuItems.Add(myItem);

Part II

Object-Oriented
Programming

137

Reading 6

Object-Oriented
Programming in
Visual Basic .NET

You really can’t do anything in Visual Basic .NET without coming face to face
with objects. When you create a standard form in a new project, you have
access to the code for the form’s class. While this code was present in classic
Visual Basic, it was hidden from a programmer’s view. Now it is presented to
you in the integrated development environment (IDE). A solid understanding of
object-oriented programming is a prerequisite for getting the most from Visual
Basic .NET. If you are new to object-oriented programming (sometimes abbre-
viated OOP) or up till now have tried to avoid using it directly, this chapter will
make you a believer, and you’ll see that it’s pretty straightforward, which wasn’t
the case at first for me.

An Object Lesson
When I started to learn object-oriented programming about 10 years ago, I
found its concepts somewhat difficult. I read every book I could get my hands
on and thought about all that I’d read, but it still didn’t make sense. I performed
due diligence and put in the time, but for some reason OOP didn’t click.
“What’s this business about creating a class and calling methods? After all, didn’t
I do the same thing with C math libraries for years?”

From Coding Techniques for Microsoft Visual Basic .NET by John Connell. pp. 49-61, 83. (Redmond:
Microsoft Press. 2002.) Copyright © 2002 by John Connell.

138 Destination Visual Basic .NET

Then one day I had a revelation! All at once I realized how simple the con-
cepts of object-oriented programming really are, and I became a believer. I
spent time reflecting on why I took so long to understand a concept that turned
out to be so simple and realized that the reason was twofold. First, the authors
of the books I read seemed to obfuscate OOP by using terms such as overload-
ing, encapsulation, inheritance, and polymorphism all over the place before
they were clearly defined (at least for me). While I might have muddled my way
through this terminological maze, the knockout punch was the examples the
authors provided, which were contrived and never about anything that could be
used by a programmer to solve real problems. Although I tried to match alien
concepts with contrived and overly difficult examples (again, at least to me),
OOP didn’t sink in. I had pictures of cookie cutters, stars, and rectangles danc-
ing in my head. These images were the hands-down favorites of every author
discussing object-oriented programming. To me, they hadn’t made any sense.

To save you the time I spent scratching my head and thinking about
objects until my brain hurt, I’ll use prefabricated objects such as a Windows
form and a few control objects to illustrate object-oriented concepts. By work-
ing with something that you already use in your programming, the jump to
thinking about objects is much, much easier. Over time, I’ve found this
approach to be the clearest way to illustrate the principles of OOP.

I’ll cover objects and classes, properties, methods, inheritance, overloading,
polymorphism, and sharing, all within the context of what you know.

Starting Out with Objects
Let’s start out by describing our terms. Many beginners have a difficult time
sorting out the difference between a class and an object. I hear them using the
terms interchangeably. Remember that a class contains the instructions for how
to construct an object in the computer’s memory. Here’s an analogy.

A Class Is Really Only a Blueprint
Think of a class as a blueprint for building a house. A blueprint isn’t a house;
it’s a sheaf of papers with drawings and dimensions that tell a contractor how
to build a house. When the contractor follows the blueprints and builds the
house, you have an object. An object is a physical manifestation of a class, just
like a house is a physical manifestation of a blueprint.

A blueprint might indicate the location for each window and the type of
window to use. A class can include the types of controls and their positions on
a form, as well as various data types to use. A house is built with the appropri-
ate windows in the right location. A form object is created with the controls dis-
played as the form class directed. Of course, contractors use the same

Reading 6 Object-Oriented Programming in Visual Basic .NET 139

blueprints to build several houses, as shown in Figure 6-1. Likewise, you can
create several objects from the same class. Because the objects follow the same
class blueprint, each of the objects will look and function in the same way.

F02TL01

Figure 6-1 A blueprint is like a class; houses built from the blueprints
are like objects.

Let’s Talk Objects
The best way to introduce a few of the key object-oriented concepts is with an
example. Start up Visual Studio .NET and follow these steps:

1. Create a new Windows Application project. You’ll have a blank form.

2. Drag a button control from the tool palette to the form. If you’ve
worked with Visual Basic 6, this is old hat to you. Keep the default
names of the form and the button control.

Note There are three ways to add a control to a form. You
can double-click the control, you can click once on the control
and then once on the form, or you can click the control and
then drag it to the form.

3. Double-click the button control. Double-clicking the control auto-
matically adds the Click event handler to the form’s class.

4. Click the Form1.vb tab and modify the Text property of both the but-
ton and the form objects. For the form, change the Text property to
“Mirror Image”. For the button, change the value to “&Clone Me!”
You can tell the form and the button are both objects because you
can set their properties and see that both have inherited the know-
how to do things such as resize themselves.

��������
��������������
������������	���
�������������
�������������	���	������	���������������������������
����
���������������	��
�����	���	������������
������
	�������	�������������������
������������	����

��
�������������	�
����������
	���	���� ��������
�����	�
����
������������������!���!�
	�����������������
��
�����

����� ����	
�

140 Destination Visual Basic .NET

Note The ampersand (&) used in the button’s Text property
automatically provides an accelerator key combination for
power users. Visual Basic .NET adds an underscore to the
character that immediately follows the ampersand when the text
is displayed on the control. A user can press Alt plus the accel-
erator key to simulate clicking the button.

5. Size the form and button so that they look something like what’s
shown in Figure 6-2.

F02TL02

Figure 6-2 Your form should look like this.

Our Form as an Object
All objects are created as identical copies of their class; they are mirror images.
Your form is a perfect example of an object. Once you instantiate an object
from your class, however, the object is separate from any other object you
instantiate from the class. After your form is created in your project, you can
resize it in the Designer, for example. The form itself is responsible for handling
the implementation of how it is resized and redrawn. It is born knowing how
to do that and everything else a form does, such as displaying its own default
menu and dismissing itself when you click its Close button.

A key point you should understand about objects is that they are a com-
bination of data and code. The fundamental advantage of OOP is that the data
and the operations that manipulate the data are both contained in the object.
An object can be treated as a self-contained unit.

Objects are the building blocks of an object-oriented program, and an
object-oriented program is essentially a collection of objects. In the simple pro-
gram we just created, we have a button object on a form object. When the form
appears, it has a color, size, and position on the screen. These characteristics
are among what are called its properties. Properties define the state of an object.

The form also knows how to minimize and maximize itself and how to
resize itself when you drag its edges with a mouse. In other words, the form has
a set of built-in behaviors, and these behaviors are implemented by what are
called methods. Methods tell an object how to do things.

Reading 6 Object-Oriented Programming in Visual Basic .NET 141

Seeing Properties and Methods in the IDE
The IntelliSense feature in the IDE puts everything the form is or can do at
your fingertips. For example, when you enter “Form1” in the code editor,
Visual Basic .NET knows that this refers to an object because you’ve defined
Form1 as such—an object that inherits from the Windows.Forms.Form
class. The IDE displays each legitimate property or method when you enter
a dot (.) after Form1. The dot, or scope resolution modifier, separates the
object from its methods or properties. The general form is Object.Method or
Object.Property. Properties are marked by an icon of a hand holding a card,
while methods are indicated by purple flying bricks.

G02TL01Notice that Form1 was declared with an uppercase “F,” but you
could have entered form1 with a lowercase “f.” Unlike C, C++, or C#,
Visual Basic is not case sensitive, but the IDE will automatically correct
your typing and make the spelling consistent.

You could create five forms, each of a different size and with different
captions, so that each has its own Size and Text properties set to a different
value. Each object contains its own properties. Each is a self-contained black
box of functionality that contains data (its size and color) and code for how it
does things (resizing or redrawing itself, for example).

142 Destination Visual Basic .NET

If you’ve programmed before in classic Visual Basic, these concepts might
be familiar. For example, any time you placed a list box control on a form and
changed its name or size, you were modifying its properties. Whenever you
added an item to the list box with AddItem, you were calling one of the list
box’s methods.

So, just to summarize, the key elements of an object are

■ Properties. A characteristic of a form (or other object), such as its
size, color, and position or the font used for displaying text. Proper-
ties contain values that are unique to each object. Most visual con-
trols, such as our form, expose properties to define their appearance.

■ Methods. Something an object knows how to do. A form object,

for example, can resize itself, display a menu, or hide itself.

Reading, Writing, Invoking
You communicate with an object programmatically by reading and writing its
properties and invoking its methods. If you wanted to read the current Height
property of a form and display it in a message box, you would write the follow-
ing line in the Load event of the form:

Private Sub Form1_Load(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles MyBase.Load
 MessageBox.Show("Form1's height is " & _
 Me.Height, Me.Text)
End Sub

Note The keyword might look strange to those of you new to OOP.
Me is the equivalent of the this pointer in C++. Me is used to refer-
ence the current object, which happens to be a form. The Me key-
word is one of the first elements you will have to become familiar with
in Visual Basic .NET.

The first call in this code fragment is to the Show method of the MessageBox
class, new to Visual Basic .NET. The Show method knows how to display a mes-
sage box. The first parameter is what will be displayed as the message. Because
we want to display the height of the form, we read its Height property as the sec-

Reading 6 Object-Oriented Programming in Visual Basic .NET 143

ond parameter of the Show method. The code Me.Height reads the form’s Height
property. The final parameter of the Show method is the title to show in the mes-
sage box’s caption. The code Me.Text reads the form’s Text property. Now when
you run the program, the dialog box shown in Figure 6-3 appears.

F02TL03

Figure 6-3 This message box displays the form’s height.

If you wanted to change the form’s Height property—write to it instead of
read it—you simply assign a new value to the property. To change the form’s
height from 115 pixels to 203 pixels when the user clicks the button, you would
write this code:

Protected Sub Button1_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs)

 Me.Height = 203
 MessageBox.Show("Form1's height is " & _
 Me.Height, Me.Text)
End Sub

When the user clicks the button, the first line of code assigns the value 203
to the form’s Height property, invoking the form’s Size method. The form imme-
diately adjusts to the new size. The message box displays the height, confirming
that the form resized itself, as shown in Figure 6-4. All you did was assign a new
property value; the form object already knew how to resize itself through its
Size method.

F02TL04

Figure 6-4 The resized form.

144 Destination Visual Basic .NET

The form object automatically knows whether you are reading or writing
a value by the position of the object reference relative to the equal sign (=). To
assign a value to a property, you use code like the following:

Me.Height = 203

With the object reference on the left side of the equal sign, the object knows
you are assigning a value to the property.

To read the value of a property, you use code like the following:

MyVariable = Me.Height

Here the object reference is on the right side of the equal sign, which means
you’re reading the property’s value. As I stressed before, you don’t know how
the property is stored inside the object. It might be stored in Portuguese, pig
Latin, or any language at all. All you know is that you can read an integer from
the property or write an integer to set the property. How the object performs
these operations is its business. An object can seem very much like the Wizard
of Oz when he says, “Pay no attention to the man behind the curtain.”

This kind of implementation is one of the productive aspects of working
with objects. To use an object you simply read or write its properties and call the
methods that it exposes. The object is responsible for doing the real work. An
object might be prepackaged like a form, or it might be one you write yourself.

Inheritance
As you can see, a form is a pretty smart object. It has all sorts of properties and
methods that you can use immediately because they are part of the base class
(also known as the parent class) that the form object inherits from. As I’ve said,
inheritance is one of the fundamental tenets of object-oriented programming.
Through inheritance, you can derive classes from other classes that have already
been written. In our example, the base class is System.Windows.Forms.Form.

Public Class Form1
 Inherits System.Windows.Forms.Form

When a class inherits from a base class, it inherits the properties and meth-
ods of that class. Properties and methods are often referred to as the members
of a class. You can then use or add to these members in your own class in what-
ever way you need.

Reading 6 Object-Oriented Programming in Visual Basic .NET 145

The Buffed Up Message Box
The message box we’re using in this example is a tried and true friend of
the Visual Basic programmer, but a few changes have been made to the
message box that classic Visual Basic programmers should note. In
Visual Basic 6, the MsgBox function supported optional arguments to
specify a Help topic that would be displayed when the user pressed F1.
Because the underlying mechanism for displaying Help topics has
changed significantly in Visual Basic .NET, the HelpFile and Context
arguments have been eliminated.

The older MsgBox syntax is still available in Visual Basic .NET. The
Microsoft.VisualBasic.Interaction class exposes a MsgBox method that
approximates the functionality of the Visual Basic 6 MsgBox function.
However, I suggest you move to the new MessageBox class. It’s entirely
possible that in later versions of Visual Basic .NET, legacy Visual Basic syn-
tax will be eliminated. By using the Show method of the MessageBox class,
System.Windows.Forms.MessageBox provides fairly extensive support for
informing and instructing the user.

Sometimes a user must dismiss a message box before continuing.
Forms and dialog boxes can be displayed as either modal or modeless (the
default). A modal form or dialog box must be closed (hidden or unloaded)
before you can continue working with the application. Most forms, how-
ever, are displayed as modeless forms, which means that you can switch
from one form to another by simply clicking the form you want to be
active. Dialog boxes or message boxes that display important messages
should always be modal. The user should always be required to close the
dialog box or respond to its message before proceeding.

At times you might want to show a form modally, such as a form
you’ve customized for entering a password or logging in. You want the
user to address this form before moving on. Simply call the form’s Show-
Dialog method to accomplish this.

mydialog = New Dialog1()
mydialog.ShowDialog()

146 Destination Visual Basic .NET

Understanding Namespaces
A large part of the power of Visual Basic .NET comes from the base classes sup-
plied by the Microsoft .NET Framework. Microsoft has provided a vast array of
ready-built classes for your use. The .NET Framework includes a variety of base
classes that encapsulate data structures, perform I/O, give you access to infor-
mation about a loaded class, and provide ways for you to perform rich GUI
generation and data access and develop server controls. These built-in types are
designed to be the foundation on which all .NET applications, components, and
controls are built.

These base classes are simple to use, and you can easily derive from them
to include their functionality in your own specialized classes. To bring some
order to this power, the .NET base classes are grouped into what are called
namespaces. As I mentioned earlier, our form is an instance of the System.Win-
dows.Forms.Form class. In other words, the form lives in the .NET Framework
namespace dedicated to Windows client user interface programming.

Think of a namespace as a container for related classes in the same way
that a folder on your hard drive contains related files. In a .NET program you’ll
make use of many of the base classes, and any significant Visual Basic .NET
program that you develop will have many more of your own namespaces. Hav-
ing a firm understanding of the concept of namespaces is required before you
do just about anything in Visual Basic .NET.

Because we need a way to identify and find the built-in items required for
a program, the .NET Framework types are named using a dot-syntax naming
scheme that connotes a naming hierarchy. You can see this syntax in the famil-
iar class System.Windows.Forms.Form.

Public Class Form1
 Inherits System.Windows.Forms.Form

This syntax tells us that the Form class is related to other classes that use
the System.Windows.Forms namespace. These classes, representing objects
such as graphical controls, are all part of the namespace. The part of the name
up to the last dot (System.Windows.Forms) is referred to as the namespace
name, and the last part (Form) as the class name. These naming patterns group
related classes into namespaces and are used to build and document class
libraries. This naming syntax has no effect on a class’s visibility, how you access
its members, how your classes inherit from the class, or how the linker binds
your code.

Reading 6 Object-Oriented Programming in Visual Basic .NET 147

As you’ve seen, the root namespace for the types in the .NET Framework
is the System namespace. This namespace includes classes that represent the
base data types used by all applications. These include Object (the root of the
inheritance hierarchy), Byte, Char, Array, Int32, String, and so on.

Along with the base data types, the System namespace itself includes almost
100 classes. These classes range from those for handling exceptions (errors) and
events to those dealing with core run-time concepts such as application domains
and the automatic memory manager. Since it’s impossible to cover everything
about .NET in a single book, my goal is for you to work with these built-in classes
enough that you’ll be able to find what you need on your own.

In addition to the base data types touched on above, the System
namespace contains 24 second-level namespaces. Table 6-1 lists the categories
of functionality that are built in and the namespaces in each category.

Table 6-1 Second-Level Namespaces in the System Namespace

Category Namespace

Data System.Data

System.Xml

System.Xml.Serialization

Component model System.CodeDom

System.ComponentModel

Configuration System.Configuration

Framework services System.Diagnostics

System.DirectoryServices

System.Management

System.ServiceProcess

System.Messaging

System.Timers

Globalization System.Globalization

System.Resources

Network programming System.NET

Programming basics System.Collections

System.IO

System.Text

System.Text.RegularExpressions

System.Threading
(continued)

148 Destination Visual Basic .NET

Revisiting the Solution Explorer
Open the Solution Explorer by selecting View|Solution Explorer in the
IDE. Click the References entry to expand it, and you’ll see the items
shown in the following illustration. The list contains the default references
for a project. Even though namespaces live in assemblies (i.e., files), the
Solution Explorer displays the namespaces, and it’s more helpful to us to
know the namespace than it is to know the particular assembly.

G02TL02

Reflection System.Reflection

Rich, client-side GUI System.Drawing

System.Windows.Forms

Run-time infrastructure services System.Runtime.CompilerServices

System.Runtime.InteropServices

System.Runtime.Remoting

System.Runtime.Serialization

Security services System.Security

Web services System.Web

System.Web.Services

Table 6-1 Second-Level Namespaces in the System Namespace (continued)

Category Namespace

Reading 6 Object-Oriented Programming in Visual Basic .NET 149

Revisiting the Solution Explorer (continued)

Of course, if you use any of the base classes that are defined in
libraries, you need to ensure that the Visual Basic .NET compiler knows
where to look for them—you need to understand how the compiler finds
the namespaces you import. In more sophisticated projects later in the
book, you’ll import namespaces that are not among the defaults. You’ll
have to add references to these namespaces so that the compiler can
probe the assemblies and find them. To add a reference, right-click Refer-
ences in the Solution Explorer and select Add Reference to open the Add
Reference dialog box, shown here.

G02TL03The namespaces are listed in the Component Name column. You can
also see the version and the path that provides the fully qualified refer-
ence to the assembly file where the namespace items are housed. Don’t
select anything now. This glimpse is just to round out our exploration of
the IDE for a project.

❇❇❇

150 Destination Visual Basic .NET

Polymorphism
The term polymorphism comes from the Greek language and literally means
“many forms.” In the context of object-oriented programming, it means “do the
right thing.” For example, many classes can provide the same property or
method, and a caller doesn’t have to know what class an object belongs to
before calling the property or method. A programmer might call Form1.Size or
Text1.Size and know that the object will do what’s right to resize itself.

Most object-oriented programming systems provide polymorphism
through inheritance. For example, you might have two forms that inherit from
the Windows.Forms.Form class. Each form could override the class’s Close
method. When the Close method is invoked for Form1, it might ensure that all
database connections are closed. The Close method of Form2 might display a
message box. The user simply closes each form, and then each form does the
right thing. Not too terribly difficult, eh?

While you can implement polymorphism through inheritance, you can
also use it through a programming interface that you can write. With polymor-
phism you can create hierarchies of classes and then treat the objects in the
hierarchy as either similar or different depending on your needs. As we delve
more deeply into classes later in the book, I’ll examine this concept in more
detail. The endgame, however, is the same. A program calls the same method
on a different object and the right thing happens. Polymorphism is another
large word for a straightforward concept.

The Three Pillars of Object-Oriented
Programming: As Easy as PIE
Object-oriented programming is as easy as PIE. That’s Polymorphism,
Inheritance, and Encapsulation. We just covered the three cornerstones of
all object-oriented programming.

■ Polymorphism. Overriding methods of the same name for differ-

ent objects to perform different actions.

■ Inheritance. Deriving an object from a base class to inherit its

properties and methods.

■ Encapsulation. Hiding data within a class so that it can be manipu-

lated only by subroutines or functions within the class itself.

151

Reading 7
Inheritance

To the majority of developers, the most important new feature of Visual Basic is
implementation inheritance. In a nutshell, inheritance is the ability to derive a
new class (the derived or inherited class) from a simpler class (the base class).
The derived class inherits all the fields, properties, and methods of the base
class and can modify the behavior of any of those properties and methods by
overriding them. And you can also add new fields, properties, and methods to
the inherited class.

Inheritance is especially effective for rendering an is-a relationship
between two classes. For example, you can create a Bird class from the Animal
class because a bird is an animal and therefore inherits the characteristics and
behaviors of the generic animal, such as the ability to move, sleep, feed itself,
and so on. You can then extend the new Bird class with new properties and
methods, such as the Fly and LayEgg methods. Once the Bird class is in place,
you can use it as the base class for a new Falcon class, and so on. A more busi-
ness-oriented example of inheritance is an Employee class that derives from the
Person class, an example that we will use often in the following sections.

A few programming languages, such as Microsoft Visual C++, support
multiple-class inheritance, by which a class can derive from more than one base
class. All .NET languages, however, support at most single-class inheritance.

Inheritance in Previous Visual Basic Versions
Inheritance is an effective way to reuse code in a class. Visual Basic 6 and previ-
ous versions offered no native support for inheritance, but you could simulate it,
to an extent at least, by writing a good amount of code. It’s interesting to revisit
this technique because in some cases you’ll find it useful in Visual Basic .NET
as well.

From Programming Microsoft Visual Basic .NET by Francesco Balena. pp. 237-277. (Redmond: Microsoft
Press. 2002.) Copyright © 2002 by Francesco Balena.

152 Destination Visual Basic .NET

Inheritance by Delegation
Say you have a Person class that exposes properties such as FirstName, Last-
Name, Address, and BirthDate, and you want to create a new Employee class
that exposes these properties and a few additional ones, such as BaseSalary and
HourlySalary. Under Visual Basic 6, you have only two choices: you can copy
the Person source code into the Employee class—an approach some develop-
ers ironically call cut-and-paste inheritance—or you can use a coding tech-
nique called inheritance by delegation. In the latter case, the derived class
delegates all the inherited properties and methods to an instance of the base
class, which is conveniently instantiated in the Class_Initialize event (or through
an auto-instancing variable, as in the following code snippet).

‘ A Visual Basic 6 version of the Employee class
‘
‘ The inner object of the base class
Private Person As New Person

‘ A FirstName property that delegates to the inner object
Property Get FirstName() As String

FirstName = Person.FirstName
End Property
Property Let FirstName(ByVal newValue As String)

Person.FirstName = newValue
End Property
‘ Add here other delegated properties and methods.
§

Inheritance and Late-Bound Polymorphic Code
Another benefit of inheritance—including simulated inheritance achieved
through delegation—is that you can create polymorphic code that can operate
on both the base class and the derived class. In Visual Basic 6, such polymor-
phic code must use a variable of type Variant or Object, and therefore, you can
refer to the actual object’s methods and properties only through late binding.
Thus, the downside is that you have polymorphism at the expense of perfor-
mance and robustness:

‘ This procedure works with both Person and Employee objects.
Sub DisplayName(obj As object)

’ This code uses late binding.
Print obj.FirstName & “ “ obj.LastName

End Sub

The delegation technique works well and is flexible enough to handle all
cases, but it has two severe shortcomings: it requires that you manually write a

Reading 7 Inheritance 153

lot of code, and it requires that you modify the derived class whenever you add
or delete a member in the base class. Moreover, all the delegation code tends to
slow down your applications, so you can’t use it in time-critical cases.

Early-Bound Polymorphic Code
Visual Basic 6 developers can implement yet another variant of inheritance, the
so-called interface inheritance, a fancy name for a very common way to use the
Implements keyword. In this case, you “inherit” only the methods’ signature
from the base class, not their implementation. Again, it’s up to you to write all
the code that performs the actual operation:

‘ A Visual Basic 6 class that inherits Person’s interface
Implements Person
‘ Private members
Private m_FirstName As String
Private m_LastName As String
§

Private Property Get Person_FirstName() As String
Person_FirstName = m_FirstName

End Property
Private Property Let Person_FirstName(ByVal RHS As String)

m_FirstName = RHS
End Property
‘ Add here other properties and methods.
§

This coding technique lets you write more efficient polymorphic code that
uses early binding:

‘ You can pass either a Person or an Employee object
‘ to this procedure.
Sub DisplayName(p As Person)

’ This code uses early binding.
Print p.FirstName & “ “ p.LastName

End Sub

Finally, you can mix the two techniques—inheritance by delegation and
the interface implementation—and have the methods in the Person interface
delegate their action to an inner Person object. This latter approach offers the
best in terms of code reuse but requires that you write a large amount of code.
Or you can switch to Visual Basic .NET.

154 Destination Visual Basic .NET

Inheritance in Visual Basic .NET
To see how inheritance works in Visual Basic .NET, let’s start by defining a sim-
ple Person base class:

Class Person
’ Fields visible from outside the class
Public FirstName As String
Public LastName As String

End Class

You don’t have to write any delegation code to implement inheritance in
Visual Basic .NET because all you need is an Inherits clause immediately after
the Class statement:

‘ The Employee class inherits from Person
Class Employee

Inherits Person
§

End Class

Or you can use the following syntax to convince your C# colleagues that Visual
Basic. NET is a first-class language:

‘ A more C++-like syntax
Class Employee: Inherits Person

§
End Class

The great thing about inheritance in Visual Basic .NET is that you can
inherit from any object, including objects for which you don’t have the source
code, because all the plumbing code is provided by the .NET Framework. The
only exception to this rule occurs when the author of the class you want to derive
from has marked the class sealed, which means that no other class can inherit
from it. (You’ll find more information later in this reading about sealed classes.)

The derived class inherits all the Public and Friend fields, properties, and
methods of the base class. Note that inheriting a field could be a problem
because a derived class becomes dependent on that field, and the author of the
base class can’t change the implementation of that field—for example, to make
it a calculated value—without breaking the derived class. For this reason, it’s
usually preferable that classes meant to work as base classes should include
only Private fields. You should always use a property instead of a field to make
a piece of data visible outside the class because you can always change the
internal implementation of a property without any impact on derived classes.
(To save space and code, some of the examples in this section use fields instead
of properties: in other words, do as I say, not as I do.)

Reading 7 Inheritance 155

Extending the Derived Class
You can extend the derived class with new fields, properties, and methods sim-
ply by adding these new members anywhere in the class block:

Class Employee
Inherits Person

’ Two new public fields
Public BaseSalary As Single
Public HoursWorked As Integer
’ A new private field
Private m_HourlySalary As Single

’ A new property
Property HourlySalary() As Single

Get
Return m_HourlySalary

End Get
Set(ByVal Value As Single)

m_HourlySalary = Value
End Set

End Property

’ A new method
Function Salary() As Single

Return BaseSalary + m_HourlySalary * HoursWorked
End Function

End Class

 Using the Derived Class
You can use the new class without even knowing that it derives from another
class. However, being aware of the inheritance relationship between two
classes helps you write more flexible code. For example, inheritance rules state
that you can always assign a derived object to a base class variable. In this case,
the rule guarantees that you can always assign an Employee object to a Person
variable:

Sub TestInheritance()
Dim e As New Employee
e.FirstName = “Joe"
e.LastName = “Doe"
’ This assignment always works.
Dim p As Person = e
’ This proves that p points to the Employee object.
Console.WriteLine(p.CompleteName) ’=> Joe Doe

End Sub

156 Destination Visual Basic .NET

The compiler knows that Person is the base class for Employee, and it
therefore knows that all the properties and methods that you can invoke
through the p variable are exposed by the Employee object as well. As a result,
these calls can never fail. This sort of assignment is always successful also when
the derived class inherits from the base class indirectly. Indirect inheritance
means that there are intermediate classes along the inheritance path, such as
when you have a PartTimeEmployee class that derives from Employee, which
in turn derives from Person.

A consequence of this rule is that you can assign any object reference to
an Object variable because all .NET classes derive from System.Object either
directly or indirectly:

‘ This assignment *always* works, regardless of
‘ the type of sourceObj.
Dim o As Object = sourceObj

Assignments in the opposite direction don’t always succeed, though. Con-
sider this code:

‘ This code assumes that Option Strict is Off.

Dim p As Person
If Math.Rnd < .5 Then

’ Sometimes P points to an Employee object.
p = New Employee()

Else
’ Sometimes P points to a Person object.
p = New Person()

End If
‘ This assignment fails with an InvalidCastException
‘ error if Math.Rnd was >= .5.
Dim e As Employee = p

The compiler can’t determine whether the reference assigned to the e vari-
able points to an Employee or a Person object, and the assignment fails in the
latter case. For this reason, this assignment is rejected if Option Strict is on. (You
should set Option Strict On for all the files in the project or from inside the
Build page of the project Property Pages dialog box.) An assignment that is
accepted by the compiler regardless of the Option Strict setting requires that
you perform an explicit cast to the destination type, using the CType or the
DirectCast operator:

‘ This statement works also when Option Strict is On.
Dim e As Employee = DirectCast(p, Employee)

Reading 7 Inheritance 157

Inheriting Events
A derived class inherits also the events defined in the base class. Let’s make a
concrete example and assume that the base class exposes a GotMail event:

Class Person
§
Event GotMail(ByVal msgText As String)

Sub NotifyNewMail(ByVal msgText As String)
’ Let all listeners know that we got mail.
RaiseEvent GotMail(msgText)

End Sub

End Class

If Employee inherits from Person, you can use an Employee object in the fol-
lowing way:

Dim WithEvents anEmployee As Employee

Sub TestInheritance2()
’ Create the event sink.
anEmployee = New Employee()
anEmployee.FirstName = “Joe"
anEmployee.LastName = “Doe"

’ Notify this employee that he got new mail.
’ (This indirectly raises the event.)
anEmployee.NotifyNewMail(“Message from VB2TheMax”)

End Sub

‘ The event procedure
Sub Employee_NewMail(ByVal msgText As String) Handles anEmployee.GotMail

Console.WriteLine(“NEW MAIL: “ & msgText)
End Sub

Inheriting Shared Members
A derived class inherits all the shared methods of the base class. For example,
let’s enhance the Person class with a shared method that returns True when two
persons are brothers (where brotherhood is defined as having at least one par-
ent in common). To implement this shared function, we have to add two fields
to the Person base class:

Class Person
§
’ Public fields
Public Father As Person
Public Mother As Person

(continued)

158 Destination Visual Basic .NET

Shared Function AreBrothers(ByVal p1 As Person, ByVal p2 As Person) _
As Boolean
Return (p1.Father Is p2.Father) Or (p1.Mother Is p2.Mother)

End Function
End Class

Because the Employee class inherits from Person, you can check whether two
employees are brothers using this code:

Sub TestInheritance3()
Dim e1 As New Employee()
e1.FirstName = “Joe"
e1.LastName = “Doe"

Dim e2 As New Employee()
e2.FirstName = “Robert"
e2.LastName = “Doe"

Dim e3 As New Employee()
e3.FirstName = “Ann"
e3.LastName = “Doe"

’ Joe is Robert and Ann’s father.
e2.Father = e1
e3.Father = e1
’ Call the inherited shared method in the Employee class.
Console.WriteLine(Employee.AreBrothers(e2, e3)) ’ => True

End Sub

Polymorphic Behavior
As I mentioned previously, inheriting from a base class implicitly adds a degree
of polymorphism to your code. Under Visual Basic 6, you achieve efficient
early-bound polymorphism by having the derived class expose the base class as
a secondary interface. (See “Early-Bound Polymorphic Code” earlier in this sec-
tion.) Visual Basic .NET doesn’t require any interface gimmick to get the same
behavior:

Dim p As Person
If Math.Rnd < .5 Then

’ Sometimes P points to an Employee object.
p = New Employee()

Else
’ Sometimes P points to a Person object.
p = New Person()

End If
‘ In either case, this polymorphic code uses early binding.
Console.WriteLine(p.FirstName & “ “ & p.LastName)

Reading 7 Inheritance 159

Notice that a base class variable can’t access methods defined only in the
derived class. For example, the following code doesn’t compile:

‘ *** This code doesn’t compile because you’re trying to access
‘ a method defined in the Employee class through a Person variable.
p.BaseSalary = 10000

As an exception to this rule, you can access—more precisely, you can try to
access—any member in any class via an Object variable and late binding as
long as Option Strict is Off:

‘ *** This code requires that Option Strict be Off.
§
Dim o As Object = New Employee()
‘ The following statement uses late binding.
o.BaseSalary = 10000

Overriding Members in the Base Class
The derived class can modify the behavior of one or more properties and meth-
ods in the base class. Visual Basic .NET requires that you slightly modify your
code in both the base class and the derived class to implement this new behav-
ior. For example, say that you have a CompleteName method in the Person
class. You must prefix it with the Overridable keyword to tell the compiler that
this method can be overridden:

‘ ...(In the Person (base) class)...
Overridable Function CompleteName() As String

Return FirstName & “ “ & LastName
End Function

You must use the Overrides keyword to redefine the behavior of this method in
the derived class:

‘ ...(In the Employee (derived) class)...
Overrides Function CompleteName() As String

Return LastName & “, “ & FirstName
End Function

Another common term for such a method is virtual method. Your code
won’t compile if you omit either the Overridable keyword in the base class or
the Overrides keyword in the derived class. This behavior is a nuisance when
you’re creating large classes meant to work as base classes because you must
remember to use the Overridable keyword for each and every member.

160 Destination Visual Basic .NET

Visual Studio offers a simple and effective way to create the template code
for an overridden method: click the down arrow for the Class Name drop-down
list, scroll until you find the name of the derived class, and click the (Overrides)
element immediately below it. (See Figure 7-1.) Then click the down arrow for
the Method Name drop-down list, and click the method you want to override.
You can use this technique also to generate the template for event handlers and
for procedures that implement methods of a secondary interface.

F05CN01

Figure 7-1. Generating the template code for an overridden method in
Visual Studio.

Visual Basic .NET also supports the NotOverridable keyword, which
explicitly states that a method can’t be overridden; however, this is the default
behavior, and in fact you can use this keyword only in conjunction with the
Overrides keyword, as I explain in the following section.

When you override a property in the base class, you can redefine its inter-
nal implementation, but you can’t alter the read or write attribute. For example,
if the base class exposes a ReadOnly property, you can’t make it writable by
overriding it in the derived class. Similarly, you can’t define a read-write prop-
erty that overrides a WriteOnly property in the base class. Along the same lines,
if you’re overriding a default member in the base class, the method in the
derived class must be the default member in the derived class and requires the
Default keyword.

Note that you can’t override fields, constants, or shared members defined
in the base class.

Reading 7 Inheritance 161

Override Variations
By default, a method marked with the Overrides keyword is itself overridable,
so you never need both the Overrides and Overridable keywords in the same
procedure definition, even though using both is legal. You need the NotOver-
ridable keyword to explicitly tell the compiler that an overridden method isn’t
overridable in derived classes:

‘ This procedure overrides a procedure in the base class, but this
’ procedure can’t be overridden in any class that inherits from the current
’ class.

NotOverridable Overrides Sub MyProc()
§

End Sub

You need neither the Overrides keyword in the derived class nor the
Overridable keyword in the base class if you’re adding a member with the same
name but a different signature. For example, if the Employee class contains a
CompleteName method with one argument, it doesn’t override the parameter-
less method with the same name in the Person class, and therefore no special
keyword is necessary in either class. Oddly enough, however, the method in
the derived class does require the Overloads keyword:

‘ ...(In the Person (base) class)...
‘ Note: no Overridable keyword
Function CompleteName() As String

Return FirstName & “ “ & LastName
End Function

‘ ...(In the Employee (derived) class)...
‘ Note: no Overrides keyword, but Overloads is required.
Overloads Function CompleteName(ByVal title As String) As String

Return title & “ “ & LastName & “, “ & FirstName
End Function

The general rule is therefore as follows: you don’t need the Overloads
keyword when a class defines multiple members with identical names, but you
need the Overloads keyword in the derived class when the derived class
exposes multiple members with the same name, regardless of whether they’re
inherited from the base classes or added in the derived class. However, you
must use Overrides in the derived class (and Overridable in the base class) only
if the derived class is redefining an overloaded method that already exists in the
base class with the same argument signature.

162 Destination Visual Basic .NET

Note The compiler can generate more efficient code when calling
nonoverridable methods instead of overridable methods (also known
as virtual methods), so you might want to avoid using the Overridable
keyword if you can. For example, the JIT compiler can inline regular
methods but not virtual methods. (Inlining is an optimization technique
through which the compiler moves code from the called method into
the caller’s procedure.) In addition, allocating an object that contains
virtual methods takes slightly longer than the allocation of an object
that has no virtual methods.

However, benchmarks prove that invoking a nonoverridable
method is less than 15 percent faster than invoking an empty method
marked with the Overridable keyword, and in practice the difference is
hardly noticeable with actual nonempty methods in real-world applica-
tions. In absolute terms, the difference in timing is so small that you
can disregard it unless you’re performing millions of method calls.

While we’re talking performance, remember that calling a virtual
method on a value type forces the compiler to consider it a reference
type, which causes the object to be boxed in the heap and therefore
degrades the overall execution speed. For example, this happens when
you call the ToString method on a value type such as a Structure, as
you can easily see by looking at the IL code produced by such a call.

The MyBase Keyword
The MyBase keyword is useful when you want to reference a field, property, or
method of the base object. If a member hasn’t been overridden in the derived
class, the expressions Me.membername and MyBase.membername refer to the
same member and execute the same code. However, when membername has
been redefined in the inherited class, you need the MyBase keyword to access
the member as defined in the base class. Consider the following method:

‘ ...(In the Person (base) class)...
Overridable Function CompleteName() As String

Return FirstName & “ “ & LastName
End Function

Now, let’s assume that the Employee class overrides this method to prefix the
complete name with the employee’s title. Here’s a not-so-smart implementation
of this method:

Reading 7 Inheritance 163

‘ ...(In the Employee (derived) class)...
Public Title As String

Overrides Function CompleteName() As String
If Title <> ““ Then CompleteName = Title & “ “
CompleteName &= FirstName & “ “ & LastName

End Function

The preceding solution isn’t optimal because it doesn’t reuse any code in
the base class. In this particular case, the code in the base class is just a string
concatenation operation, but in a real class it might be dozens or hundreds of
statements. Worse, if you later change or improve the implementation of the
CompleteName function in the base class, you must dutifully apply these
changes to all the classes that inherit from Person. The MyBase keyword lets
you implement a better solution:

Overrides Function CompleteName() As String
If Title <> ““ Then CompleteName = Title & “ “
CompleteName &= MyBase.CompleteName

End Function

If you worked with simulated inheritance under Visual Basic 6, you see
that the coding pattern is the same as the one you used with inheritance by del-
egation, for which MyBase corresponds to the private instance of the base class
managed by the inherited class.

.NET programming guidelines dictate that an inherited class that overrides
the IDisposable.Dispose method of its base class should manually invoke its
base class’s Dispose method:

Overrides Sub Dispose()
’ Put your cleanup code here.
§
’ Call the base class’s Dispose method.
MyBase.Dispose

End Sub

Constructors in Derived Classes
Even though you declare constructor procedures with the Sub keyword, they
aren’t ordinary methods and aren’t inherited from the base class in the way all
other methods are. It’s up to you to provide the derived class with one or more
constructors if you want the derived class to be creatable using the same syntax
as the base class.

If the base class has no constructor method or has a Sub New procedure
that takes no arguments, you don’t strictly need to define an explicit constructor

164 Destination Visual Basic .NET

for the derived class. As a matter of fact, all the preceding examples show that
you can create an instance of the Employee class without defining a constructor
for it:

Dim e As Employee = New Employee()

Things are different when the base class doesn’t include a parameterless
constructor method either implicitly or explicitly. In this case, the derived class
has to contain a constructor method, and the very first executable line of this
method must be a call to the base class’s constructor. Say that the Person2 class
has the following constructor method:

Class Person2
Sub New(ByVal firstName As String, ByVal lastName As String)

Me.FirstName = firstName
Me.LastName = lastName

End Sub
’ ...(other properties and methods as in Person class) ...
§

End Class

The derived Employee2 class must therefore contain the following code:

Class Employee2
Inherits Person2

Sub New(ByVal firstName As String, ByVal lastName As String)
’ The first executable statement *must* be a call
’ to the constructor in the base class.
MyBase.New(firstName, lastName)
’ You can continue with the initialization step here.
§

End Sub
’ ...(other properties and methods) ...
§

End Class

The constructor in the derived class can have a different argument signa-
ture from the constructor in the base class, but also in this case the first execut-
able statement must be a call to the base class’s constructor:

Public Title As String ’ A new field

Sub New(ByVal firstName As String, ByVal lastName As String, _
ByVal title As String)
MyBase.New(firstName, lastName)
Me.Title = title

End Sub

Reading 7 Inheritance 165

Sometimes you’re forced to create auxiliary functions whose only purpose
is to comply with the requirement that the first executable statement be a call to
the base class’s constructor.

Finalizers in Derived Classes
A well-written class that uses unmanaged resources (files, database connec-
tions, Windows objects, and so on) should implement both a Finalize method
and the IDisposable.IDispose method. If you’re inheriting from a class that uses
unmanaged resources, you should check whether your inherited class uses any
additional unmanaged resources. If not, you don’t have to write any extra code
because the derived class will inherit the base class’s implementation of both
the Finalize and the Dispose methods. However, if the inherited class does use
additional unmanaged resources, you should override the implementation of
these methods, correctly release the unmanaged resources that the inherited
class uses, and then call the base class’s corresponding method. For example,
the Finalize method should always call the base class’s Finalize procedure:

Protected Overrides Sub Finalize()
’ Release unmanaged resources created by the inherited class.
§
’ Ask the base class to release its own unmanaged resources.
MyBase.Finalize()

End Sub

You can use a generic technique for correctly implementing these meth-
ods in a class, based on an overloaded Dispose method that contains the code
for both the IDisposable.Dispose and the Finalize methods. As it happens, this
overloaded Dispose method has a Protected scope, so in practice you can cor-
rectly implement the Dispose-Finalize pattern in derived classes by simply over-
riding one method:

Class BetterDataFile2
Inherits DataFile2

’ Insert here regular methods, some of which may allocate additional
’ unmanaged resources.
§

’ The only method we need to override to implement the Dispose-Finalize
’ pattern for this class.
Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)

’ Exit now if the object has been already disposed.
’ (The disposed variable is declared as Protected in the base class.)

(continued)

166 Destination Visual Basic .NET

If disposed Then Exit Sub

If disposing Then
’ The object is being disposed, not finalized.
’ It is safe to access other objects (other than the base
’ object) only from inside this block.
§

End If

’ Perform clean up chores that have to be executed in either case.
§

’ Call the base class’s Dispose method.
MyBase.Dispose(disposing)

End Sub
End Class

The MyClass Keyword
You can easily miss a subtle but important detail of inheritance: when a client
calls a nonoverridden method of an inherited class, the code runs in the base
class (as you would expect) but in the context of the derived class.

The simplest way to explain this concept is through an example, once
again based on the Person-Employee pair. Let’s define a Person3 base class
exposing a TitledName method that returns the complete name of the person,
prefixed with his or her title if one has been specified:

Enum Gender
NotSpecified
Male
Female

End Enum

Class Person3
’ (In a real-world class, these would be properties.)
Public FirstName As String
Public LastName As String
Public Gender As Gender = Gender.NotSpecified
’ ...(other members omitted for brevity) ...
§

Dim m_Title As String
Overridable Property Title() As String

Get
Return m_Title

End Get

Reading 7 Inheritance 167

Set(ByVal Value As String)
m_Title = Value

End Set
End Property

’ Prefix the name with a title if one has been specified.
Function TitledName() As String

If Title <> ““ Then
Return Title & “ “ & FirstName & “ “ & LastName

Else
Return FirstName & “ “ & LastName

End If
End Function

End Class

The derived Employee3 class doesn’t override the TitledName method, but it
does override the Title property, so it’s never an empty string:

Class Employee3
Inherits Person3

’ Always provide a title if one hasn’t been assigned.
Overrides Property Title() As String

Get
If MyBase.Title <> ““ Then

Return MyBase.Title
ElseIf Gender = Gender.Male Then

Return “Mr."
ElseIf Gender = Gender.Female Then

Return “Mrs."
End If

End Get
Set(ByVal Value As String)

MyBase.Title = Value
End Set

End Property
End Class

Because the derived class doesn’t override the TitledName property, the
version in the base class is used. However, that code runs in the context of the
derived class, and therefore, it uses the overridden version of the Title property,
the one defined in Employee3 instead of the one defined in Person3:

Dim e As New Employee3(“Joe", “Doe”)
e.Gender = Gender.Male
‘ The TitledName method defined in Person3 uses the overridden
‘ version of Title property defined in Employee3.
Console.WriteLine(e.TitledName) ’ => Mr. Joe Doe

168 Destination Visual Basic .NET

A better way to anticipate the effect of inheritance is to pretend that all the
nonoverridden routines in the base class have been pasted inside the derived
class. So if they reference another property or method, they call the version of
that member that’s defined in the derived class—not the original one defined in
the base class.

However, sometimes you want a piece of code in the base class to use the
nonoverridden version of the properties and methods it references. Let’s use
another example to clarify this concept. Let’s say that a person can vote only if
he or she is 18 years old, so the Person3 class contains this code:

‘ This code assumes that the following Imports statement has been used.
Imports Microsoft.VisualBasic

Class Person3
§
Public BirthDate As Date

’ Age is defined as the number of whole years passed from BirthDate.
Overridable ReadOnly Property Age() As Integer

Get
Age = CInt(DateDiff(DateInterval.Year, BirthDate, Now()))
If Month(Now) < Month(Birthdate) Or _

(Month(Now) = Month(BirthDate) And _
Day(Now) < Day(BirthDate)) Then
’ Correct if this year’s birthday hasn’t occurred yet.
Age = Age - 1

End If
End Get

End Property

ReadOnly Property CanVote() As Boolean
Get

Return (Age >= 18)
End Get

End Property
End Class

The Employee3 class uses a looser definition of the age concept and over-
rides the Age property with a simpler version that returns the difference
between the current year and the year when the employee was born:

Class Employee3
§

’ Age is defined as difference between the current year
’ and the year the employee was born.
Overrides ReadOnly Property Age() As Integer

Reading 7 Inheritance 169

Get
Age = CInt(DateDiff(DateInterval.Year, BirthDate, Now()))

End Get
End Property

End Class

Do you see the problem? The CanVote property incorrectly uses the Age prop-
erty defined in the Employee3 class rather than the original version in the
Person3 class. To see what kind of bogus result this logical error can cause, run
this code:

Sub TestMyClassKeyword()
’ Create a person and an employee.
Dim p As New Person3(“Joe", “Doe”)
Dim e As New Employee3(“Robert", “Smith”)
’ They are born on the same day.
p.BirthDate = #12/31/1984#
e.BirthDate = #12/31/1984#
’ (Assuming that you run this code in the year 2002...)
’ The person can’t vote yet (correct).
Console.WriteLine(p.CanVote) ’ => False
’ The employee appears to be allowed to vote (incorrect).
Console.WriteLine(e.CanVote) ’ => True

End Sub

Once you understand where the problem is, its solution is simple: you
must use the MyClass keyword to be sure that a method in a base class always
uses the properties and methods in that base class (as opposed to their over-
ridden version in the inherited class). Here’s how to fix the problem in our
example:

’ ...(In the Person3 class)...
ReadOnly Property CanVote() As Boolean

Get
’ Ensure that it always uses the nonoverridden
’ version of the Age property.
Return (MyClass.Age >= 18)

End Get
End Property

Member Shadowing
.NET lets you inherit from a class in a compiled DLL for which you neither have
nor control the source code. This raises an interesting question: what happens
if you extend the base class with a method or a property and then the author of
the base class releases a new version that exposes a member with the same
name?

170 Destination Visual Basic .NET

Visual Basic copes with this situation in such a way that the application
that uses the derived class isn’t broken by changes in the base class. If the
derived class has a member with the same name as a member in the base class,
you get a compilation warning, but you are still able to compile the two classes.
In this case, the member in the derived class is said to be shadowing the mem-
ber with the same name in the base class. Visual Basic offers three different syn-
tax forms of shadowing:

■ A member in the derived class shadows all the members in the base
class with the same name, regardless of their parameter signatures;
as I’ve explained, you get a compilation warning that doesn’t prevent
successful compilation (unless you select the Treat Compiler Warn-
ings As Errors check box on the Build page of the project Property
Pages dialog box).

■ A member in the derived class marked with the Shadows keyword
hides all the members in the base class with the same name, regard-
less of their signatures; the effect is exactly the same as in the pre-
ceding case. In addition, you don’t get any compilation warning, so
you should use the Shadows keyword to make it clear that you are
intentionally shadowing one or more members in the base class.

■ A member in the derived class marked with the Overloads keyword
shadows only the member in the base class that has the same name
and argument signature. (Note that you can apply the Shadows and
Overloads keywords to the same member.)

Shadowing can be quite confusing, so it’s best to look at a concrete
example:

Class AAA
Sub DoSomething()

Console.WriteLine(“AAA.DoSomething”)
End Sub
Sub DoSomething(ByVal msg As String)

Console.WriteLine(“AAA.DoSomething({0})", msg)
End Sub

Sub DoSomething2()
Console.WriteLine(“AAA.DoSomething2”)

End Sub
Sub DoSomething2(ByVal msg As String)

Console.WriteLine(“AAA.DoSomething2({0})", msg)
End Sub

End Class

Reading 7 Inheritance 171

Class BBB
Inherits AAA

Overloads Sub DoSomething()
Console.WriteLine(“BBB.DoSomething”)

End Sub
Shadows Sub DoSomething2()

Console.WriteLine(“BBB.DoSomething2”)
End Sub

End Class

The following routine calls the methods in the two classes:

Sub TestMemberShadowing()
Dim b As New BBB()
b.DoSomething() ’ => BBB.DoSomething
b.DoSomething(“abc”) ’ => AAA.DoSomething(abc)
b.DoSomething2() ’ => BBB.DoSomething2

End Sub

As you see, the DoSomething procedure in class BBB shadows the proce-
dure DoSomething with zero arguments in class AAA, but the procedure that
takes one argument isn’t shadowed and can be accessed as usual. This behavior
contrasts with the DoSomething2 procedure in class BBB, which is declared
with the Shadows keyword and therefore hides both procedures with the same
name in class AAA; for this reason, the following statement raises a compilation
error:

’ *** This statement doesn’t compile.
b.DoSomething2(“abc”)

If you drop the Shadows keyword in class BBB, the overall effect is the
same, the only difference being that the call to DoSomething2 causes a compi-
lation warning.

You’ve just seen that you can shadow a property or a method even if the
procedure isn’t marked with Overridable (or is marked with NotOverridable
Overrides) in the base class. This raises an interesting question: what is the
point of omitting the Overridable keyword, then?

In practice, member shadowing makes it impossible for a developer to
prevent a method from being overridden, at least from a logical point of view.
In fact, let’s say that by omitting the Overridable keyword, the author of the
Person3 class makes the Address property not overridable:

Class Person3
§
Dim m_Address As String

(continued)

172 Destination Visual Basic .NET

Property Address() As String
Get

Return m_Address
End Get
Set(ByVal Value As String)

m_Address = Value
End Set

End Property
End Class

The author of the Employee3 class can still override the Address property—for
example, to reject null string assignments—by using the Shadows keyword (to
suppress compilation warnings) and manually delegating to the base class
using the MyBase.Address expression:

Class Employee3
Inherits Person3

§

Shadows Property Address() As String
Get

Return MyBase.Address
End Get
Set(ByVal Value As String)

If Value = ““ Then Throw New ArgumentException()
MyBase.Address = Value

End Set
End Property

End Class

Here’s the client code that uses the Address property:

Sub TestShadows()
’ Create a Person3 object.
Dim p As New Person3(“Joe", “Doe”)
’ You can assign a null string to its Address property
’ without raising any error.
p.Address = “"

’ Create an Employee3 object.
Dim e As New Employee3(“Ann", “Doe”)
’ Show that Employee overrides the (nonoverridable) Address property.
’ NOTE: Next statement throws an exception because the code in
’ Employee3 trapped the invalid assignment.
e.Address = “"

End Sub

As you see, you can’t prevent a class member from being overridden.
However, you see a different behavior when you access the member through a

Reading 7 Inheritance 173

base class variable, depending on whether you override the member in the
standard way or you shadow it implicitly or explicitly using the Shadows key-
word. When a member has been overridden with Overrides, you always access
the member in the derived class, even if you’re referencing it through a base
class variable. When a member has been shadowed (with or without the Shad-
ows keyword), no inheritance relationship exists between the two members
and therefore you access the member in the base class. An example can make
this concept clearer:

Sub TestShadows2()
Dim e As New Employee3(“Joe", “Doe”)
’ This statement correctly raises an ArgumentException
’ because of the code in the Employee class.
e.Address = ““

’ Access the same object through a base class variable.
Dim p As Person3 = e
’ This raises no run-time error because the Address property procedure
’ in the base class is actually executed.
p.Address = ““

End Sub

If the Address property had been redefined using the Overrides keyword, the
last statement would invoke the Address property procedure in the derived
class, not in the base class.

Because the redefined method in the derived class has nothing to do with
the original method in the base class, the two members can have different
scope qualifiers, which isn’t allowed if the method in the derived class over-
rides the method in the base class. For example, you can have a Public method
in the derived class that shadows (and possibly delegates to) a Protected
method in the base class. However, keep in mind that a Private member in the
derived class does not shadow a member in the base class: in other words, the
Shadows keyword has no effect on Private members.

One last detail on shadowing: you can’t shadow a method that is defined
as MustOverridable in the base class. In this case, the compiler expects a
method marked with the Overrides keyword and flags the derived class as
incomplete.

Redefining Shared Members
You can use neither the Overridable nor the Overrides keyword with shared
members because shared members can’t be overridden. Either they’re inherited
as they are or they must be shadowed and redefined from scratch in the derived
class.

174 Destination Visual Basic .NET

You cannot use the MyBase variable to invoke shared methods defined in
the base class if you’re redefining them in the derived class because MyBase is
forbidden in shared methods. For example, say that you have a Person class
with the following shared method:

‘ ...(In the Person (base) class)...
Shared Function AreBrothers(ByVal p1 As Person, ByVal p2 As Person) As Boolean

Return (p1.Father Is p2.Father) Or (p1.Mother Is p2.Mother)
End Function

In addition, you have an Employee class that inherits from Person and that
redefines the AreBrothers shared method so that two Employee objects can be
considered brothers if they have one parent in common and the same family
name. The following code builds on the AreBrothers shared method in the Per-
son class so that if you later change the definition in the Person class, the
Employee class automatically uses the new definition:

‘ In the Employee (derived) class
Shared Shadows Function AreBrothers(ByVal e1 As Employee, _

ByVal e2 As Employee) As Boolean
Return Person.AreBrothers(e1, e2) And (e1.LastName = e2.LastName)

End Function

Unfortunately, no keyword lets you reference the base class in a generic
way, so you have to hard-code the name of the base class inside the source
code of the derived class when calling a shared method of the base class.

Sealed and Virtual Classes
Visual Basic .NET provides a few additional keywords that let you decide
whether other developers can or must inherit from your class and whether they
have to override some of its members.

The NotInheritable Keyword
For security (or other) reasons, you might want to ensure that no one extends
a class you created. You can achieve this by simply marking the class with the
NotInheritable keyword:

‘ Ensure that no one can inherit from the Employee class.
NotInheritable Class Employee

§
End Class

Reading 7 Inheritance 175

Classes that can’t be inherited from are also called sealed classes. In gen-
eral, you rarely need to seal a class, but good candidates for the NotInheritable
keyword are utility classes that expose functions as shared members. As you
might expect, the Overridable keyword can’t be used inside a sealed class.

The MustInherit Keyword
A situation that arises more frequently is that you want to prevent users from
using your class as is and instead force them to inherit from it. In this case, the
class is called a virtual or abstract class because you can use it only to derive
new classes and can’t instantiate it directly. The closest concept in Visual Basic
6 is the idea of abstract classes that you create to define an interface, with an
important difference: you can reuse code inside Visual Basic .NET abstract
classes, whereas you can’t when you use a Visual Basic 6 class to define an
interface.

To prevent direct usage of a class, you must flag it with the MustInherit
keyword. You typically use this keyword when a class is meant to define a
behavior or an archetypal object that never concretely exists. A typical example
is the Animal class, which should be defined as virtual because you never
instantiate a generic animal; rather, you create a specific animal—a cat, a dog,
and so on, which derives some of its properties from the abstract Animal class.

Here’s a more business-oriented example: your application deals with dif-
ferent types of documents—invoices, orders, payrolls, and so on—and all of
them have some behaviors in common in that they can be stored, printed, dis-
played, or attached to an e-mail message. It makes sense to gather this common
behavior in a Document class, but at the same time you want to be sure that no
one mistakenly creates a generic Document object because your application
doesn’t know how to deal with it.

MustInherit Class Document
’ Contents in RTF format
Private m_RTFText As String

Overridable Property RTFText() As String
Get

Return m_RTFText
End Get
Set(ByVal Value As String)

m_RTFText = Value
End Set

End Property

(continued)

176 Destination Visual Basic .NET

’ Save RTF contents to file.
Overridable Sub SaveToFile(ByVal fileName As String)

§
End Sub

’ Load RTF contents from file.
Overridable Sub LoadFromFile(ByVal fileName As String)

§
End Sub

’ Print the RTF contents.
Overridable Sub Print()

§
End Sub

§
End Class

Now you can define other classes that inherit their behavior from the Document
virtual class:

Class PurchaseOrder
Inherits Document

’ Redefines how a PO is printed.
Overrides Sub Print()

§
End Sub

End Class

Note that you must explicitly use the Overridable keyword in the base class and
the Overrides keyword in the inherited class, even if the base class is marked
with MustInherit.

The MustOverride Keyword
In general, users of a virtual class aren’t forced to override its properties and
methods. After all, the main benefit in defining a virtual class is that derived
classes can reuse the code in the base class. Sometimes, however, you want to
force inherited classes to provide a custom version of a given method.

For example, consider this Shape virtual class, which defines a few prop-
erties and methods that all geometrical shapes have in common:

MustInherit Class Shape
’ Position on the X-Y plane
Public X, Y As Single

Reading 7 Inheritance 177

’ Move the object on the X-Y plane.
Sub Offset(ByVal deltaX As Single, ByVal deltaY As Single)

X = X + deltaX
Y = Y + deltaY
’ Redraw the shape at the new position.
Display

End Sub

Sub Display()
’ No implementation here

End Sub
End Class

The Shape virtual class must include the Display method—otherwise, the
code in the Offset procedure won’t compile—even though that method can’t
have any implementation because actual drawing statements depend on the
specific class that will be inherited from Shape. Alas, the author of the derived
class might forget to override the Display method, and no shape will be ever
displayed.

In cases like this, you should use the MustOverride keyword to make it
clear that the method is virtual and must be overridden in derived classes.
When using the MustOverride keyword, you specify only the method’s signa-
ture and must omit the End Property, End Sub, or End Function keyword:

MustInherit Class Shape
’ ... (Other members as in previous code snippet) ...
§
MustOverride Sub Display()

End Class

If a class has one or more virtual methods, the class itself is virtual and
must be marked with the MustInherit keyword. The following Square class
inherits from Shape and overrides the Display method:

Class Square
Inherits Shape

Public Side As Single

Overrides Sub Display()
’ Add here the statements that draw the square.
§

End Sub
End Class

178 Destination Visual Basic .NET

Scope
Visual Basic .NET accepts five different scope qualifiers: the three qualifiers
available to Visual Basic 6 developers (Public, Friend, and Private) plus two
new ones, Protected and Protected Friend. These two new qualifiers are related
to inheritance, which explains why I have deferred their description until now.
Before diving into a thorough discussion of scope, though, you must learn
about one more Visual Basic .NET feature: nested classes.

Nested Classes
Unlike previous versions of the language, Visual Basic .NET lets you nest class
definitions:

Class Outer
§
Class Inner

§
End Class

End Class

The code inside the Outer class can always create and use instances of the
Inner class, regardless of the scope qualifier used for the Inner class. If the
nested class is declared using a scope qualifier other than Private, the nested
class is also visible to the outside of the Outer class, using the dot syntax:

Dim obj As New Outer.Inner

Nested classes serve a variety of purposes. First, they’re useful for organiz-
ing all your classes in groups of related classes and for creating namespaces that
help resolve name ambiguity. For example, you might have a Mouse class
nested in an Animal class and another Mouse class nested inside a Peripheral
class:

Class Animal
§
’ This class can be referred to as Animal.Mouse.
Class Mouse

§
End Class

End Class

Class Peripheral
§
’ This class can be referred to as Peripheral.Mouse.
Class Mouse

§
End Class

End Class

Reading 7 Inheritance 179

Code in the Animal class can refer to the inner Mouse class without using the
dot syntax, and it can refer to the other mouse class using the Peripheral.Mouse
syntax. Things become more complex when you have multiple nesting levels,
as in the following code:

Class Peripheral
Dim m As Mouse
Dim kb As Keyboard
Dim k As Keyboard.Key

§
’ This class can be referred to as Peripheral.Mouse.
Class Mouse

Dim kb As Keyboard
Dim k As Keyboard.Key
§

End Class

’ This class can be referred to as Peripheral.Keyboard.
Class Keyboard

Dim m As Mouse
Dim k As Key
§

’ This class can be referred to as Peripheral.Keyboard.Key.
Class Key

Dim m As Mouse
Dim kb As Keyboard
§

End Class
End Class

End Class

Only classes nested immediately inside the outer class can be referenced
without the dot syntax from inside the outer class (or its nested classes). For
example, you need the dot syntax to refer to the Key class from any class other
than Keyboard. However, the rule isn’t symmetrical: you can refer to the Mouse
class without the dot syntax from inside the Key class.

Another common use for nested classes is to encapsulate one or more
auxiliary classes inside the class that uses them and to avoid making them visi-
ble to other parts of the application. In this case, the inner class should be
marked with the Private scope qualifier. For example, you might create an XML-
Parser class that parses an XML text and internally uses the Tag and Attribute

180 Destination Visual Basic .NET

classes to do the parsing. These classes aren’t meant to be visible from the out-
side, so they’re marked as private:

Class XMLParser
§
’ These classes aren’t visible from outside the XMLParser class.
Private Class Tag

§
End Class
Private Class Attribute

§
End Class

End Class

Inner classes have one peculiar feature: they can access private members
in their container class if they’re provided with a reference to an object of that
container class. Consider these two classes:

Class Keyboard
Dim m_Brand As String ’ A private member

ReadOnly Property Brand() As String
Get

’ Code inside the outer class can access a private
’ member without any reference. (Me is implicit.)
Return m_Brand

End Get
End Property

Class Key
’ This public field is meant to be assigned when you’re creating
’ an instance of the Key class.
Public ParentKeyboard As Keyboard

ReadOnly Property Brand() As String
Get

’ Code inside the inner class can access a private member
’ in the outer class but requires an object reference.
Return ParentKeyboard.m_Brand

End Get
End Property

End Class
End Class

You don’t need an object reference to access a shared member in the
outer class:

Class Keyboard
’ This shared member is True if this class supports
’ non-Latin keyboards.

Reading 7 Inheritance 181

Public Shared SupportsNonLatinKeyboards As Boolean

Class Key
ReadOnly Property SupportsNonLatin() As Boolean

Get
’ You can access a shared member in the outer class
’ without an object reference.
Return SupportsNonLatinKeyboards

End Get
End Property

End Class
End Class

Note that the outer class can’t expose a public field, property, or function that
returns an instance of a private nested class:

Class Outer
’ This public field is legal because it returns a Public inner class.
Public Field1 As InnerPublic

’ *** This public field isn’t legal because you can’t return
’ a private inner class – you get a compilation error!
Public Field2 As InnerPrivate

’ This field is legal because it refers to a private nested class
’ but the field is private.
Dim Field3 As InnerPrivate

Private Class InnerPrivate
§

End Class
Public Class InnerPublic

§
End Class

End Class

Public, Private, and Friend Scope Qualifiers
As a Visual Basic 6 developer, you’re already familiar with three of the five
scope keywords in Visual Basic .NET.

The Public scope qualifier makes a class or one of its members visible out-
side the current assembly if the project is a library project. The meaning of Pub-
lic scope is therefore the same as in Visual Basic 6.

The Private scope makes a class private and usable only inside its con-
tainer. This container is usually the current application except in the case of
nested classes. (As we’ve seen in the preceding section, a private nested class is
usable only inside its container class.) A private member is usable only inside
the class in which it’s defined, and this includes any nested class defined in the

182 Destination Visual Basic .NET

same container. Leaving aside nested classes, the Private keyword has the same
meaning as it does in Visual Basic 6.

The Friend scope qualifier makes a class or one of its members visible to
the current assembly. So this keyword has almost the same meaning as under
Visual Basic 6 if you replace the word assembly with project. Because most
assemblies are made of just one project, for most practical purposes this key-
word has retained its meaning in the transition to Visual Basic .NET. You can
use the Friend keyword to make a nested class visible from outside its container
without making it Public and visible also from outside the project. Note that
Friend is the default scope for classes, unlike Visual Basic 6 classes, whose default
scope is Public. To make a Visual Basic .NET class visible outside the assembly
that contains it, you must explicitly flag the class with the Public keyword.

In general, no restriction applies to using and mixing these attributes
unless the result would make no sense. For example, you can have a Private
class that exposes a Public method, but a Public method in a Public class can’t
expose a Protected or Private member because Visual Basic .NET wouldn’t
know how to marshal it outside the current assembly. Similarly, you can’t
inherit a Friend class from a Private class, nor you can have a Public class that
inherits from a Friend or Private class. The reason is that all the members in the
base class should be visible to clients of the inherited class, so the scope of
members in the base class can’t be more limited than the scope of members in
the derived class.

You can’t use scope qualifiers to alter the scope of an overridden method.
If a base class contains a Public method, for example, you can’t override it with
a Private or Friend method in the derived class. This rule ensures that if you
assign a reference to a derived object to a base class variable, it’s guaranteed
that you can call all the overridden methods:

‘ If DerivedClass inherits from BaseClass,
‘ inheritance rules ensure that this assignment works.
Dim obj As BaseClass = New DerivedClass
‘ Because overridden methods can’t have a narrower scope,
‘ the following statement is guaranteed to compile correctly.
obj.DoSomething

The Protected Scope Qualifier
Protected is a new scope qualifier that makes a member or a nested class visible
inside the current class as well to all classes derived by the current class. Put
another way, Protected members are private members that are also inherited by
derived classes. Consider the following class, which has three Protected mem-
bers and one Public method:

Reading 7 Inheritance 183

Class Customer
’ This member is visible to this class and
’ classes derived from this class.
Protected AlwaysPaysOnTime As Boolean

’ Compute the discount percentage on products.
Protected Overridable Function ProductDiscount() As Single

’ Offer an additional discount if the customer always pays on time.
If AlwaysPaysOnTime Then

ProductDiscount = 15
Else

ProductDiscount = 10
End If

End Function

’ By default make no discount on shipment.
Protected Overridable Function ShipmentDiscount() As Single

Return 0
End Function

’ Compute the actual discount on an order, given the
’ amount of products purchased and the amount of shipment.
Function TotalOrderAmount(ByVal ProductAmount As Single, _

ByVal ShipmentAmount As Single) As Single
Return ProductAmount * (1 - ProductDiscount / 100) _

+ ShipmentAmount * (1 - ShipmentDiscount / 100)
End Function

End Class

Unless you provide a way to modify the value of the AlwaysPaysOnTime
field, the TotalOrderAmount method always evaluates the amount for an order
by discounting it by 10 percent. You can implement a public method or prop-
erty that lets clients modify the AlwaysPaysOnTime field, or you can create a
new class that sets that field to True:

Class GoodCustomer
Inherits Customer

Sub New()
’ Note that no MyBase.New is needed because the base
’ class has no constructor with parameters.
AlwaysPaysOnTime = True

End Sub
End Class

184 Destination Visual Basic .NET

The GoodCustomer class can access the AlwaysPaysOnTime protected
field because the GoodCustomer class inherits from Customer. You can easily
show that setting this field to True changes the way discounts are evaluated:

Sub TestProtectedScope()
Dim c1 As New Customer()
Dim c2 As New GoodCustomer()
Console.WriteLine(c1.TotalOrderAmount(10000, 100)) ’ => 9100
Console.WriteLine(c2.TotalOrderAmount(10000, 100)) ’ => 8600

End Sub

At the same time, you can verify that the AlwaysPaysOnTime field is private and
can’t be seen by regular clients:

‘ *** This statement doesn’t compile.
c1.AlwaysPaysOnTime = True

Code inside the GoodCustomer class can invoke Protected methods
defined in the Customer class, and a Protected property or method can be over-
ridden to provide custom versions. For example, let’s define a ForeignCustomer
class that doesn’t charge shipping fees to well-behaved foreign customers:

Class ForeignCustomer
Inherits Customer

’ A convenient constructor that lets us test well- and
’ ill-behaved foreign customers
Sub New(ByVal alwaysPaysOnTime As Boolean)

Me.AlwaysPaysOnTime = alwaysPaysOnTime
End Sub

’ We don’t charge shipping to well-behaved foreign customers.
Protected Overrides Function ShipmentDiscount() As Single

If AlwaysPaysOnTime Then ShipmentDiscount = 100
End Function

End Class

The ShipmentDiscount function in the ForeignCustomer class redefines
how shipping is charged and overrides the function defined in the base class
(where it was conveniently marked with the Overridable keyword). Let’s prove
that this works as expected:

Sub TestProtectedScope2()
Dim c3 As New ForeignCustomer(False) ’ Ill-behaved
Dim c4 As New ForeignCustomer(True) ’ Well-behaved

Console.WriteLine(c3.TotalOrderAmount(10000, 400)) ’ => 9400
Console.WriteLine(c4.TotalOrderAmount(10000, 400)) ’ => 8500

End Sub

Reading 7 Inheritance 185

You can apply the Protected keyword to nested classes as well. You can use
a nested Protected class only from inside the containing class and from inside
derived classes, but not from elsewhere in the application. Here is an example:

Class Customer
§
Protected Class OrderHistory

Public Count As Integer
Public TotalAmount As Single
§

End Class
End Class

Class GoodCustomer
Inherits Customer

’ A derived class sees protected nested classes.
Dim oh As Customer.OrderHistory
’ Note that you don’t even need the dot syntax.
Dim oh2 As OrderHistory
§

End Class

‘ This class doesn’t inherit from Customer.
Class AnotherClass

’ *** This statement doesn’t compile.
Dim oh As Customer.OrderHistory
§

End Class

The Protected Friend Scope Qualifier
The fifth scope qualifier available in Visual Basic .NET is Protected Friend,
which combines the features of the Friend and Protected keywords and there-
fore defines a member or a nested class that’s visible to the entire assembly and
to all inherited classes. This keyword seems to be redundant—you might think
that Friend also comprises inherited classes—until you consider that Visual
Basic .NET allows you to inherit classes from other assemblies. Let’s rewrite the
previous example, this time using the Protected Friend qualifier:

Class Customer
§
Protected Friend Class OrderHistory

Public Count As Integer
Public TotalAmount As Single
§

End Class
End Class

186 Destination Visual Basic .NET

In this new version, the nested OrderHistory class is now fully visible to the
assembly that hosts the Customer class and to all the classes inherited from
Customer, regardless of whether they’re defined inside or outside the current
assembly.

Using Scope Qualifiers with Constructors
You might find it interesting to see what happens when you apply a scope qual-
ifier other than Public to a constructor procedure. Using a Friend constructor
makes the class creatable from inside the assembly but not from outside it: this
is the closest equivalent of PublicNotCreatable classes in Visual Basic 6.

Public Class Widget
’ This class can be created only from inside the current assembly.
Friend Sub New()

§
End Sub

End Class

You can define a Private Sub New method if you want to prevent clients—
inside and outside the assembly—from instancing the class. This approach can
be useful if the class contains only shared members, so there’s no point in cre-
ating an instance of it:

Class Triangle
’ This private constructor prevents clients from
’ instancing this class.
Private Sub New()

’ No implementation code here.
End Sub

’ Add here all the shared members for this class.
Shared Function GetArea(...) As Double

§
End Function
§

End Class

Another use for Private constructors arises when you want clients to create
instances through a shared member rather than with the usual New keyword, as
in the following example:

Class Square
Public Side As Double

’ This private constructor prevents clients from
’ instancing this class directly.

Reading 7 Inheritance 187

Private Sub New(ByVal side As Double)
Me.Side = side

End Sub

’ Clients can create a square only through this shared method.
Shared Function CreateSquare(ByVal side As Double) As Square

Return New Square(side)
End Function

End Class

Clients can create a new Square object using this syntax:

Dim sq As Square = Square.CreateSquare(2.5)

Some classes in the .NET Framework expose this sort of constructor
method, but in general you should stick to standard constructor methods
because this alternative technique doesn’t offer any clear advantage, except for
the ability to run custom code before actually creating the instance.

The scope of the constructor has a far-reaching and somewhat surprising
effect on the inheritance mechanism. To begin with, a class that has only Private
constructors can’t be used as a base class, even if it isn’t flagged with the NotIn-
heritable keyword. In fact, the derived class should have its own constructor
(because the base class doesn’t have a Public parameterless default construc-
tor), but any attempt to call MyBase.New will fail because the Sub New proce-
dure isn’t visible outside the base class.

Along the same lines, a Public class that has one or more Friend Sub New
methods can be used as a base class, but only if the derived class is defined in
the same assembly. Any attempt to inherit that class from outside the assembly
would fail because the inherited class can’t call a constructor with a Friend
scope. If clients outside the current assembly should be able to instantiate the
base class, you can add a shared function that returns a new instance of the class:

‘ This class is visible from outside the assembly but can’t
‘ be used as a base class for classes outside the assembly.
Public Class Widget

’ This constructor can be called only from inside
’ the current assembly.
Friend Sub New()

§
End Sub

’ A pseudoconstructor method for clients located
’ outside the current assembly.
Public Shared Function CreateWidget() As Widget

Return New Widget()
End Function

End Class

188 Destination Visual Basic .NET

Even if clients outside the current assembly shouldn’t use the Widget class,
you still have to mark it as Public (rather than Friend or Private) if you use Widget
as the base class for other Public classes, as I explained in the preceding section.

If the constructor has Protected scope, the class can be used as a base
class because the constructor of the derived class can always access this con-
structor, but the class can’t be instantiated from inside or outside the current
assembly. Finally, if the constructor has Protected Friend scope, the class can be
used as a base class but can be instantiated only from inside the assembly it
resides in and from inside derived classes.

Understanding from where you can instantiate a class and from where you
can use it as a base class is made more complicated by the fact that nested
classes can always access Private and Protected constructors. Table 7-1 can help
you determine the effect of the scope of the constructor and the class itself.

Table 7-1 The Effect of Class Scope and Constructor Scope on a Class’s
Ability to Be Instantiated or Used as a Base Class

Class
Scope*

Constructor
Scope

Types That Can
Instantiate This
Class

Classes That Can
Inherit from This
Class

Private Private Nested types Nested classes

Protected Nested types and
inherited classes

Private classes defined
in the same container

Friend,
Protected
Friend, Public

Types defined in
the same container

Private classes defined
in the same container

Protected Private Nested types Nested classes

Protected Nested types and
inherited classes

Private/Protected
classes defined in the
same container

Friend,
Protected
Friend, Public

Types defined in
the same container
and inherited
classes

Private/Protected
classes defined in the
same container

Friend,
Protected
Friend

Private Nested types Nested classes

Protected Types defined in
the same container
and inherited
classes

Classes defined in cur-
rent assembly

Reading 7 Inheritance 189

Redefining Events
You can’t override events in the same way you override properties and meth-
ods, and in fact, you can’t use the Overrides keyword on events. (However, you
can use the Shadows keyword on events.)

Occasionally, you might want to redefine what happens when the base
class raises an event. For example, the inherited class might need to perform
some additional processing when an event is fired from inside the base class, or
it might need to suppress some or all of the events that the base class raises.
These two tasks require two different approaches.

If the derived class just needs to get a notification that an event is being
raised from inside the base class, the simplest solution is to set up a WithEvents
variable and assign it the Me reference. In other words, the derived class
becomes a listener for its own events. Let’s say that you have the following base
class:

Class DataReader
Event DataAvailable()

Friend,
Protected
Friend, Public

Types defined in
current assembly

Classes defined in cur-
rent assembly

Public Private Nested types Nested classes

Protected Nested types and
inherited classes

All classes, inside or
outside current
assembly

Friend Types defined in
current assembly

Classes defined in cur-
rent assembly

Protected Friend Types defined in
current assembly
and inherited
classes

All classes, inside
or outside current
assembly

Public All types, inside or
outside current
assembly

All classes, inside
or outside current
assembly

* Note that you can have Private, Protected, and Protected Friend classes only inside a container type.

Table 7-1 The Effect of Class Scope and Constructor Scope on a Class’s
Ability to Be Instantiated or Used as a Base Class (continued)

Class
Scope*

Constructor
Scope

Types That Can
Instantiate This
Class

Classes That Can
Inherit from This
Class

(continued)

190 Destination Visual Basic .NET

Sub GetNewData()
RaiseEvent DataAvailable()

End Sub
End Class

Next you create a derived FileDataReader class that inherits from DataReader
but needs to get a notification whenever the DataAvailable event is fired to
accomplish a noncritical task, such as incrementing a counter. The following
implementation does the trick:

Class FileDataReader
Inherits DataReader

’ This variable will point to the object itself (Me).
Dim WithEvents EventSink As FileDataReader
’ This counter must be incremented after each event.
Public EventCounter As Integer

Sub New()
MyBase.New()
EventSink = Me

End Sub

Private Sub NotifyDataAvailable() Handles EventSink.DataAvailable
’ Increment the counter.
EventCounter += 1

End Sub
End Class

This programming technique doesn’t require that you change the base
class in any way, but it has two serious shortcomings. First, the derived class
has no control over the event itself, and it can’t modify its arguments or prevent
it from firing. Second, you aren’t guaranteed that the event in the derived class
fires before (or after) the event in clients, so different clients might see different
values for the public EventCounter field during the event notification chain.

To solve both these problems, you must change the way the base class
fires events—in other words, you must build the base class with inheritance in
mind. Instead of using the RaiseEvent statement whenever you want to raise an
event in the base class, you call an overridable method, which by convention is
named OnEventName:

Class DataReader2
Event DataAvailable()

Sub GetNewData()
OnDataAvailable()

End Sub

Reading 7 Inheritance 191

’ This procedure contains only the RaiseEvent statement.
Protected Overridable Sub OnDataAvailable()

RaiseEvent DataAvailable()
End Sub

End Class

After this edit, the derived class can easily take control of how events are
dispatched to clients and whether they are dispatched at all. For example, this
new version raises no more than 10 events in clients:

Class FileDataReader2
Inherits DataReader2

’ This counter must be incremented after each event.
Public EventCounter As Integer

Protected Overrides Sub OnDataAvailable()
’ Increment the counter.
EventCounter += 1
’ Raise only up to 10 events.
If EventCounter <= 10 Then MyBase.OnDataAvailable()

End Sub
End Class

Note that the derived class can’t directly use the RaiseEvent statement to
raise one of its own events if the event is defined in the base class. The only
way to indirectly raise the event is by calling the OnDataAvailable method in
the base class, as shown in the preceding code.

Inheritance is so central to Visual Basic .NET programming that you’ll
probably come back to this chapter to revisit these concepts more than once.

Part III

ADO.NET

195

Reading 8
ADO.NET
Introducing ADO.NET

ADO.NET is revolutionary by many measures. Nevertheless, if you’re familiar
with ADO it won’t take much effort and time to learn ADO.NET and become as
productive as you were using Visual Basic 6.

Major Changes from ADO
From an architectural perspective, the most important change from “classic”
ADO is that ADO.NET doesn’t rely on OLE DB providers and uses .NET man-
aged providers instead. A .NET Data Provider works as a bridge between your
application and the data source, so you see that it can be considered an evolu-
tion of the OLE DB provider concept. However, the inner implementation
details are very different. ADO.NET and .NET managed data providers don’t use
COM at all, so a .NET application can access data without undergoing any per-
formance penalty deriving from the switch from managed and unmanaged
code. (Unfortunately, this isn’t 100 percent true at the time of this writing
because you still need COM to access any data source other than SQL Server,
but this problem will be gone when new managed providers are released.)

From a programmer’s perspective, the most important difference between
ADO.NET and ADO is that dynamic and keyset server-side cursors aren’t sup-
ported any longer. ADO.NET supports only forward-only, read-only resultsets
(known as firehose cursors, even though they aren’t really a type of cursor) and
disconnected resultsets. Server-side cursors have been dumped because they
consume resources on the server and create a large number of locks on data-
base tables. Taken together, these two factors can hinder application scalability
more than anything else.

Personally, I would have preferred a less drastic alteration because server-
side cursors are easy to use and are useful in many cases—for example, I use

From Programming Microsoft Visual Basic .NET by Francesco Balena. pp. 999-1062, 1083-1986. (Redmond:
Microsoft Press. 2002.) Copyright © 2002 by Francesco Balena.

196 Destination Visual Basic .NET

server-side cursors for administrative tasks that run once in a while. But I agree
that too many developers have used server-side cursors to create applications
that perform poorly and don’t scale well. Fortunately, ADO.NET uses an exten-
sible architecture, and Microsoft has announced support for server-side cursors
at a later time. In the meantime, you can still use server-side cursors through the
ADO library, which you can access through the COM Interoperability layer of
.NET. You go through an additional layer, and performance will be less than
optimal, but this condition shouldn’t be a serious problem because you would
use these cursors only in exceptional cases.

❇❇❇

.NET Data Providers
.NET data providers play the same role that OLE DB providers play under ADO:
they enable your application to read and write data stored in a data source.
ADO.NET currently supports three providers:

■ The OLE DB .NET Data Provider This provider lets you access a
data source for which an OLE DB provider exists, although at the
expense of a switch from managed to unmanaged code and the per-
formance degradation that ensues.

■ The SQL Server .NET Data Provider This provider has been specif-
ically written to access SQL Server 7.0 or later versions using Tabular
Data Stream (TDS) as the communication medium. TDS is SQL Server’s
native protocol, so you can expect this provider to give you better per-
formance than the OLE DB Data Provider. Additionally, the SQL Server
.NET Data Provider exposes SQL Server–specific features, such as named
transactions and support for the FOR XML clause in SELECT queries.

■ The ODBC .NET Data Provider This provider works as a bridge
toward an ODBC source, so in theory you can use it to access any
source for which an ODBC driver exists. However, as of this writing,
this provider officially supports only the Access, SQL Server, and
Oracle ODBC drivers, so there’s no clear advantage in using it
instead of the OLE DB .NET Data Provider. The convenience of this
provider will be more evident when more ODBC drivers are added
to the list of those officially supported.

❇❇❇

Reading 8 ADO.NET 197

Database Independence with ADO.NET
Classic ADO promotes the reuse of data-related code from different data
sources by having the Connection, Recordset, and Command objects work
equally well with any data source. For example, the only point in code at which
you must decide the actual data source you’re using is when you build the con-
nection string. Because all the ADO objects work with any data source, you’re
able to write programs that work with any data source for which an OLE DB
provider exists just by providing a suitable connection string.

This approach works well in practice with small- or medium-size database
applications. For example, I developed the source code of my VB-2-The-Max
Web site (www.vb2themax.com) using Access because I wanted to take advan-
tage of Access’s ease of use and reporting capabilities. The real production site
runs on SQL Server, however, and the only point at which the two versions dif-
fer is where the code defines the connection string.

When you turn to large-scale applications, however, ADO’s database-
agnostic approach shows its greatest limitation: you can’t take advantage of the
specific features of a given database. ADO partly copes with this limitation by
having its main objects expose a Properties collection, which is filled with the
dynamic properties that are specific to each provider. For example, you can use
ADO’s dynamic properties to decide how the ODBC driver behaves when login
information isn’t complete (the Prompt property) or to set an Access password
(the Jet OLEDB:Database Password property). However, dynamic properties
don’t allow you to execute commands against the database, so you can’t access
all the peculiar features of a given database.

ADO.NET solves this problem in an ingenious way. On the one hand,
each provider uses a different object to perform database-related tasks, so
Microsoft (or the author of the data provider) can enhance each object with
specific methods and properties that are meaningful only to that database. For
example, the SqlConnection object has the PacketSize and ServerVersions prop-
erties (which are missing in the OleDbConnection object) and a BeginTransac-
tion overloaded method that lets you create named transactions (which can’t be
used with the OLE DB .NET Data Provider).

On the other hand, because the objects in a specific .NET data provider
must inherit from an ADO.NET base class or implement one of the IDbxxxx
interfaces, you can create polymorphic code that works equally well with any

198 Destination Visual Basic .NET

provider. Here’s a fragment of code that works well with either a SQL Server
connection or a connection to an OLE DB source:

Dim cn As IDBConnection

‘ (UseSqlServerProvider is a Boolean defined and assigned elsewhere.)
If UseSqlServerProvider Then

’ Create a connection using the SQL Server provider.
’ (SqlPubsConnString is a string defined and initialized elsewhere.)
cn = New SqlConnection(SqlPubsConnString)

Else
’ Create a connection using the OLE DB provider.
’ (BiblioConnString is a string defined and initialized elsewhere.)
cn = New OleDbConnection(BiblioConnString)

End If

‘ (The following code works well with both providers.)
‘ Open the connection.
cn.Open
§
‘ Close the connection.
cn.Close

Even if the preceding code snippet is incomplete—for one thing, it doesn’t
show how to define the connection strings for the two providers—it should
prove the point I want to make: ADO.NET lets you achieve database indepen-
dence through common base classes and interfaces but without renouncing
specific and more powerful features of each individual database engine. You
pay for this extra flexibility in terms of the larger amount of code you have to
write, however.

By comparison, ADO offers almost-free database-agnostic code and
doesn’t introduce any complexity into the code you write, but it prevents you
from exploiting the best features of specific databases. Because the number of
applications that really need to be database independent is relatively small, I
believe that the ADO.NET approach is more reasonable because it delivers the
best results in terms of performance and flexibility and adds complexity only to
those few applications for which database independence is a requirement.

Even if you aren’t writing a database-agnostic program but you often work
with both providers, you might want to write procedures that you can easily
reuse in different applications.

Reading 8 ADO.NET 199

The Connection Object
Whether you work in connected or in disconnected mode, the first action you
need to perform when working with a data source is to open a connection to
it. In ADO.NET terms, this means that you create a Connection object that con-
nects to the specific database.

The Connection object is similar to the ADO object of the same name, so
you’ll feel immediately at ease with the new ADO.NET object if you have any
experience with ADO programming. Table 8-1 summarizes the properties,
methods, and events of the ADO.NET Connection object and indicates the few
members that are supported solely by either the OLE DB or the SQL Server
.NET Data Provider.

Table 8-1 Properties, Methods, and Events of the Connection Object

Category Name Description

Properties ConnectionString The string used to connect to the data source.

ConnectionTimeout The number of seconds after which an unsuc-
cessful connection times out. This property is
read-only because you set this value in the Con-
nectionString property. (Default is 15 seconds.)

Database Returns the name of the database, as specified
in the ConnectionString property (read-only).

DataSource Returns the name of the Data Source attribute,
as specified in the ConnectionString property
(read-only).

ServerVersion Returns the version of the connected server in
the format xx.yy.zzzz, or an empty string if this
information can’t be retrieved. (The provider
can also append a product-specific version
string after the version number.)

State Returns the current state of the database. Can
be an enumerated value in the following list:
Closed, Connecting, Open, Executing, Fetching,
and Broken.

(OleDb pro-
vider only)

Provider Returns the value of the Provider attribute, as
specified in the ConnectionString property
(read-only).

(SQL Server
provider only)

PacketSize Returns the size in bytes of network packets
used to communicate with SQL Server, as speci-
fied in the ConnectionString property. It can be
any value in the range 512 to 32767. (Default is
8192.)

200 Destination Visual Basic .NET

Setting the ConnectionString Property
The key property of the Connection object is ConnectionString, a string that
defines the type of the database you’re connecting to, its location, and other
semicolon-delimited attributes. When you work with the OleDbConnection
object, the connection string matches the connection string that you use with
the ADO Connection object. Such a string typically contains the following
information:

■ The Provider attribute, which specifies the name of the underlying
OLE DB Provider used to connect to the data. As of this writing, the
only valid values are SQLOLEDB (the OLE DB provider for
Microsoft SQL Server), Microsoft.Jet.OLEDB.4.0 (the OLE DB pro-
vider for Microsoft Access), and MSDAORA (the OLE DB provider
for Oracle).

WorkstationId Returns a string that identifies the client, as
specified by the Workstation ID attribute in the
ConnectionString property.

Methods Open Opens the connection.

Close Closes the connection and releases all related
resources.

BeginTransaction Begins a database transaction, using the isola-
tion level specified in the optional argument.

ChangeDatabase Changes the name of the database for the cur-
rent connection.

CreateCommand Creates a Command object related to the cur-
rent connection.

(OleDb pro-
vider only)

GetOleDbSchemaTable Returns the schema table and associated restric-
tion columns of the schema whose GUID is
passed as an argument.

ReleaseObjectPool A shared method that says the OLE DB con-
nection pool can be released when the last
connection is closed.

Events StateChange Fires when the State property changes.

InfoMesssage Fires when the database or the provider sends
an informational or a warning message.

Table 8-1 Properties, Methods, and Events of the Connection Object (continued)

Category Name Description

Reading 8 ADO.NET 201

■ The Data Source attribute, which specifies where the database is. It
can be the path to an Access database or the name of the machine on
which the SQL Server or the Oracle database is located.

■ The User ID and Password attributes, which specify the user name
and the password of a valid account for the database.

■ The Initial Catalog attribute, which specifies the name of the database
when you’re connecting to a SQL Server or an Oracle data source.

Once you’ve set the ConnectionString property correctly, you can open
the connection by invoking the Open method:

Dim BiblioConnString As String = “Provider=Microsoft.Jet.OLEDB.4.0;” _
& “Data Source=C:\Program Files\Microsoft Visual Studio\VB98\BIBLIO.MDB;"

‘ Open the Biblio.mdb database.
Dim cn As New OledbConnection()
cn.ConnectionString = BiblioConnString
cn.Open()

You can make your code more concise by passing the connection string to
the Connection object’s constructor method:

‘ Another, more concise, way to open the Biblio.mdb database.
Dim cn As New OledbConnection(BiblioConnString)
cn.Open()

The same description applies as well to the SqlConnection object, with
just one difference: you must omit the Provider attribute from the connection
string. In fact, you don’t need this attribute in this case because you can connect
only to a SQL Server database if you use the SQL Server .NET Data Provider.
Also note that you can specify (local) as the Data Source attribute if you’re con-
necting to the SQL Server on the local machine:

Dim SqlPubsConnString As String = “Data Source=(local); User ID=sa;” _
& “Initial Catalog=pubs"

Dim cn As New SqlConnection(SqlPubsConnString)
cn.Open()

The connection string can include other attributes. For example, the Con-
nection Timeout attribute sets the number of seconds after which the attempt to
open the connection fails with an error. (The default value is 15 seconds.) After
you open the connection, you can query the current value of this timeout with
the ConnectionTimeout property:

‘ Specify a longer timeout when connecting to Pubs.
Dim cn As New SqlConnection(“Data Source=(local); User ID=sa;” _

& “Initial Catalog=pubs;Connection Timeout=30”)
cn.Open()
Debug.WriteLine(cn.ConnectionTimeout) ’ => 30

202 Destination Visual Basic .NET

Other values that you pass in the connection string depend on the specific
OLE DB provider to which you’re connecting. For example, the provider
Microsoft.Jet.OLEDB.4.0 supports attributes for setting the database password or
specifying the system database that contains information about groups and users.

When you’re working with the SQL Server .NET Data Provider, you can
specify two additional attributes in the connection string: Packet Size and Work-
station ID. The former value sets the size of the network packet used to com-
municate with SQL Server; the latter is a string that can be later used to identify
the client. (Read the description of the related PacketSize and WorkstationId
properties in Table 8-1.) The Packet Size attribute is sometimes useful for opti-
mizing the flux of data to and from SQL Server. For example, you might
increase it if your application deals with large BLOB fields (such as images) or
decrease it if you often query the server for a small amount of data.

‘ Optimize the connection for large BLOB fields.
Dim cn As New SqlConnection(“Data Source=(local); User ID=sa;” _

& “Initial Catalog=pubs;Packet Size=32767”)
cn.Open()
Debug.WriteLine(cn.PacketSize) ’ => 32767

Note All the code routines in this reading open a connection to either
the Biblio.mdb database using the OLE DB .NET Data Provider (which
comes with Visual Studio 6 and Access) or the Pubs database using
the SQL Server .NET Data Provider (which is installed with any version
of SQL Server). To keep code as concise as possible, the demo appli-
cation defines these three connection strings at the module level:

' For Biblio.mdb using the OLE DB .NET Data Provider
Public BiblioConnString As String = "Provider=" _

& "Microsoft.Jet.OLEDB.4.0;Data Source=" & _
"C:\Program Files\Microsoft Visual Studio\VB98\Biblio.mdb"

' For SQL Server's Pubs using the OLE DB .NET Data Provider
Public OleDbPubsConnString As String = "Provider=" _

& "SQLOLEDB.1;Data Source=.;" _
& "Integrated Security=SSPI:Initial Catalog=Pubs"

' For Pubs using the SQL Server .NET Data Provider
Public SqlPubsConnString As String = "Data Source=.;" _

& "Integrated Security=SSPI:Initial Catalog=Pubs"

Obviously, you should edit these connection strings to match your sys-
tem’s configuration. For example, you should change the Data Source
value in BiblioConnString to assign it the actual path of Biblio.mdb.

Reading 8 ADO.NET 203

Opening and Closing the Connection
You’ve already seen that the Open method takes no arguments, unlike the
Open method of the ADO Connection object:

Dim cn As New OledbConnection(BiblioConnString)
cn.Open()

The State Property and the StateChange Event
The State property is a bit-coded field that indicates the current state of the data-
base connection. It can be the combination of one or more of the following Con-
nectionState enumerated values: Closed, Connecting, Open, Executing, Fetching,
and Broken. You typically check the State property to ensure that you’re opening
a closed connection or closing an open connection, as in this snippet:

‘ Close the connection only if it was opened.
If (cn.State And ConnectionState.Open) <> 0 Then

cn.Close()
End If

Whenever the State property changes from Open to Close or vice versa,
the Connection object fires a StateChange event:

Dim WithEvents cn As SqlConnection

Private Sub cn_StateChange(ByVal sender As Object, _
ByVal e As System.Data.StateChangeEventArgs) Handles cn.StateChange
’ Show the status of the connection in a Label control.
If (e.CurrentState And ConnectionState.Open) <> 0 Then

lblStatus.Text = “The connection has been opened"
ElseIf e.CurrentState = ConnectionState.Closed Then

lblStatus.Text = “The connection has been closed"
End If

End Sub

Note that ConnectionState.Closed is equal to 0, so you can’t use the And
bitwise operator to test this state, unlike all the other values. Be careful not to
throw an exception from inside this event handler because it would be returned
to the code that issued the Open or Close method.

Although it’s a good habit to test the state of the database before perform-
ing any operation on it, ADO.NET is much more forgiving than classic ADO in
some cases. For example, you can execute the Close method of the Connection
object (or any other ADO.NET object that exposes this method) without throw-
ing any exception if the object is already closed:

‘ This statement never throws an exception.
cn.Close()

204 Destination Visual Basic .NET

Dealing with Errors
As in ADO, you should protect your code from unexpected errors when
attempting a connection to a database as well as while processing data coming
from the database itself. However, when working with ADO.NET you have an
added responsibility: because of the garbage collection mechanism intrinsic in
.NET, the connection isn’t automatically closed when the Connection object goes
out of scope. In this case, in fact, the connection is closed in the Finalize pro-
tected method of the Connection object, and you know that the garbage collector
might call this method several minutes after the object goes out of scope.

Because an error can occur virtually anywhere you’re working in a data-
base, you should protect your code with a Try block and ensure that you close
the connection in the Finally section in an orderly way:

Dim cn As New SqlConnection(SqlPubsConnString)
Try

cn.Open()
’ Process the data here.
§

Catch ex As Exception
MessageBox.Show(ex.Message)

Finally
’ Ensure that the connection is closed.
’ (It doesn’t throw an exception even if the Open method failed.)
cn.Close()

End Try

Most of the exceptions that you catch when working with the OLE DB
.NET Data Provider are of class OleDbException. In addition to all the members
it has in common with other exception classes, this class exposes the Errors col-
lection that contains one or more OleDbError objects, each one describing how
the original error in the database (for example, a violation of the referential
integrity rules) has been reported to the many software layers that sit between
the database and the application. (This concept is the same one on which the
Errors collection of the ADO Connection object is based.) The following code
shows how you can explore the OleDbException.Errors collection to show
details about the caught exception:

‘ Run a query that references a table that doesn’t exist.
Dim cmd As New OleDbCommand(“UPDATE xyz SET id=1", cn)

Try
cmd.ExecuteNonQuery()

Catch ex As OleDbException
’ An OleDbException has occurred - display details.
Dim i As Integer, msg As String

Reading 8 ADO.NET 205

For i = 0 To ex.errors.Count - 1
Dim oledbErr As OleDbError = ex.Errors(i)
msg = “Message = “ & oledbErr.Message & ControlChars.CrLf
msg &= “Source = “ & oledbErr.Source & ControlChars.CrLf
msg &= “NativeError = “ & oledbErr.NativeError & ControlChars.CrLf
msg &= “SQLState = “ & oledbErr.SQLState & ControlChars.CrLf

Next
MessageBox.Show(msg)

Catch ex As Exception
’ A generic exception has occurred.
MessageBox.Show(ex.Message)

Finally
’ Close the connection.
cn.Close()

End Try

The SqlException object also exposes an Errors collection, containing one
or more SqlError objects. The SqlError object doesn’t support the NativeError
and SQLState properties but exposes a few members that aren’t in OleDbError:

■ Server The name of the SQL Server that generated the error

■ Procedure The name of the stored procedure or remote proce-
dure call that generated the error

■ LineNumber The line number within the T-SQL batch or stored
procedure where the error occurred

■ Number A number that identifies the type of error

■ Class The severity level of the error, in the range 1 through 25

Severity level values in the range 1 through 10 are informational and indi-
cate problems deriving from mistakes in the information the user entered. Val-
ues in the range 11 through 16 are caused by the user and can be corrected by
the user. Severity levels 17 and higher indicate serious software or hardware
errors. In general, errors with severity levels equal to 20 or higher automatically
close the connection. For this reason, you should always test the State property
of the Connection object when an exception is thrown, regardless of the data
provider you’re working with.

Opening a Database Asynchronously
One of the great innovations of ADO was its ability to perform a few meth-
ods—most notably, the opening of a connection and the querying of data—
in an asynchronous fashion, that is, without blocking the current application.

206 Destination Visual Basic .NET

Asynchronous operations were pretty difficult to set up correctly, but they
were a great tool in the hands of experienced programmers.

Don’t look for asynchronous options in ADO.NET because you won’t find
any. Does this mean that ADO.NET is less capable than good old ADO? Of
course not. It only means that asynchronous operation support is offered at the
.NET Framework level through asynchronous delegates. Moving the support for
asynchronous operations out of ADO.NET makes the object model cleaner and
simpler, and even more flexible dealing with asynchronous operations. In fact,
you can perform any ADO.NET operation, not just a few methods, while the
main program does something else.

The following code snippet shows how you can open a connection asyn-
chronously. You can use the same code pattern for any other database opera-
tion involving the Connection object or any other ADO.NET object:

Delegate Sub OpenMethod()

Sub OpenAsyncConnection()
’ Define the Connection object.
Dim cn As New OleDbConnection(BiblioConnString)
’ Create a delegate that points to the Open method.
Dim asyncOpen As New OpenMethod(AddressOf cn.Open)
’ Call it asynchronously - pass the delegate as the cookie.
Dim ar As IAsyncResult
ar = asyncOpen.BeginInvoke(AddressOf OpenComplete, asyncOpen)
’ Show a message in a Label control.
lblStatus.Text = “Waiting ..."
’ Do something else here.
§

End Sub

Sub OpenComplete(ByVal ar As IAsyncResult)
’ Retrieve a reference to the delegate, passed in the cookie.
Dim asyncOpen As OpenMethod = CType(ar.AsyncState, OpenMethod)

Try
’ Complete the operation.
asyncOpen.EndInvoke(ar)
’ Let the user know that the operation completed.
MessageBox.Show(“The connection has been opened”)

Catch ex As Exception
’ Show an error message otherwise.
MessageBox.Show(ex.Message)

End Try
End Sub

Reading 8 ADO.NET 207

Leveraging Connection Pooling
Connection pooling is a great feature of ADO.NET; it lets you transparently
reuse a database connection when an application doesn’t need it any longer.
The mechanism works this way: when the first connection to the database is
opened, a pool of identical connections is created, so subsequent requests
don’t have to wait to get a valid connection. When an application completes its
database chores, it should explicitly close the Connection object so that it can
be returned to the pool and made available for other applications. (Note that
you must explicitly close the connection to return it to the pool.)

ADO.NET creates a number of connection pools equal to the number of
distinct connection strings that your program uses, so the necessary condition
for exploiting the connection pool is that you open all your database connec-
tions using exactly the same connection string. Even just an extra space or semi-
colon makes a connection string different, so pay attention.

This requirement means that you can’t take advantage of connection pool-
ing if you specify a different user name and password in the connection string.
You’re better off, therefore, using Windows integrated security instead of data-
base security whenever it’s feasible to do so:

Dim cn As New SqlConnection(“Data Source=MyServer;” _
& “Integrated Security=SSPI;Initial Catalog=pubs”)

Another viable approach to reliable connection pooling is to encapsulate
all the database access in a .NET component that logs in to the database using
a special account and therefore uses the same connection string for all its open
connections.

The OLE DB .NET Data Provider creates a connection pool based on the
OLE DB session pooling. Connection pooling is enabled by default, but you can
turn it off by specifying a special OLE DB Services value in the connection
string:

Dim cn As New OleDbConnection(“Provider=SQLOLEDB;” _
& “Data Source=MyServer;Integrated Security=SSPI;OLE DB Services=-4”)

The OleDbConnection object exposes a ReleaseObjectPool method that
discards all unused connections from the pool. You might call it and then
invoke the GC.Collect method to free as many resources as possible.

The SQL Server .NET Data Provider offers connection pooling based on
Windows 2000 Component Services, using an implicit pooling model by
default. This arrangement means that if the current thread has already opened
a transaction using this provider, any new transaction opened will match the
same transactional context. When the thread requests a connection, the pool is
searched for a matching connection object. To be eligible for reuse, a connec-
tion in the pool must have exactly the same connection string, must have a

208 Destination Visual Basic .NET

matching transaction context (or not be associated with any transaction con-
text), and must have a valid link to the specified server.

You can control the behavior of connection pooling under the SQL Server
.NET Data Provider by using several values in the connection string. For exam-
ple, you can disable automatic enlistment in the pooling by setting the Pooling
attribute to False:

Dim cn As New SqlConnection(“Data Source=MyServer;” _
& “Integrated Security=SSPI;Initial Catalog=pubs;Pooling=false”)

You can also avoid automatic enrollment in the current transaction if no
transactions are required on the current connection, by setting the Enlist
attribute to False:

Dim cn As New SqlConnection(“Data Source=MyServer;” _
& “Integrated Security=SSPI;Initial Catalog=pubs;Enlist=False”)

You can set the minimum and maximum size of the pool by using the Min
Pool Size and Max Pool Size attributes, whose default values are 0 and 100
respectively:

‘ If this is the first connection with this connection string, a
‘ pool with 10 identical connections is prepared.
Dim cn As New SqlConnection(“Data Source=MyServer;” _

& “Integrated Security=SSPI;Initial Catalog=pubs;” _
& “Min Pool Size=10;Max Pool Size=120”)

If the pool has reached its maximum size and all the connections are cur-
rently active and serving other applications, a request for an available connec-
tion is queued until another application releases one of the connections. If no
connection is made available within the connection timeout period, an excep-
tion is thrown.

The Connection Lifetime attribute is useful in a clustered environment for
taking advantage of any new server activated after the connection pool has
already been created. As you know, all the connections in the pool link to the
server on which they were originally opened. So by default they would never
attempt to use any new server brought up after the pool has reached its maxi-
mum size. The Connection Lifetime sets the lifetime of a connection in the pool
(in seconds). After this period, the connection is destroyed automatically; pre-
sumably, it will be replaced in the pool by a new connection that points to the
server activated in the meantime.

‘ Destroy a connection in the pool after 2 minutes.
Dim cn As New SqlConnection(“Data Source=MyServer;” _

& “Integrated Security=SSPI;Initial Catalog=pubs;” _
& “Connection Lifetime=120”)

Reading 8 ADO.NET 209

Connection pooling is a mixed blessing: on the one hand, it can dramati-
cally improve the performance and scalability of your applications; on the
other, it can give you headaches if you don’t use it correctly. When you see that
a database-intensive piece of code performs with suspicious sluggishness, you
should double-check to see that it’s using connection pooling correctly. To help
you in this task, ADO.NET defines a few performance counters that you might
want to monitor while searching for unexpected behaviors in the SQL Server
.NET Data Provider. All the counters belong to the .NET CLR Data Performance
object:

■ SqlClient: Current # connection pools Number of pools associ-
ated with the process

■ SqlClient: Current # pooled and nonpooled connections
Number of connections, pooled or not

■ SqlClient: Current # pooled connections Number of connec-
tions in pools associated with the process

■ SqlClient: Peak # pooled connections Highest number of con-
nections in all pools since the application started

■ SqlClient: Total # failed connects Number of connection attempts
that failed for any reason

The .NET CLR Data Performance object exposes a sixth counter that isn’t
directly related to connection pooling but is useful in many other circumstances:

■ SqlClient: Total # failed commands Number of commands that
failed for any reason

Working with Transactions
The way you work with transactions has changed in the transition from ADO to
ADO.NET. The ADO Connection class exposes the BeginTrans, CommitTrans,
and RollbackTrans methods, which let you start, commit, or abort a transaction.
The isolation level of the transaction is determined by the current value of the
IsolationLevel property.

Creating a Transaction Object
The ADO.NET Connection object exposes only the BeginTransaction method,
which takes an optional argument that specifies the isolation level of the trans-
action being started. As in ADO, the isolation level is an enumerated value that
tells how locks are created and honored during the transaction. In a difference

210 Destination Visual Basic .NET

from ADO, the BeginTransaction method is a function that returns a Transaction
object: more precisely, it returns either an OleDbTransaction or a SqlTransac-
tion object, depending on the .NET provider you’re using:

‘ Opening a transaction with the OLE DB .NET Data Provider
Dim cn As New OleDbConnection(BiblioConnString)
Dim tr As OleDbTransaction = cn.BeginTransaction(IsolationLevel.Serializable)

‘ Opening a transaction with the SQL Server .NET Data Provider
Dim cn2 As New SqlConnection(SqlPubsConnString)
Dim tr2 As SqlTransaction = cn2.BeginTransaction(IsolationLevel.Serializable)

You then use the Transaction object to control the outcome of the transaction:
you invoke the Commit method to confirm all the changes in the transaction
and the Rollback method to cancel them:

Dim tr As OleDbTransaction
Try

’ Start a transaction.
tr = cn.BeginTransaction(IsolationLevel.Serializable)
’ Insert here database processing code.
§
’ If we get here, we can confirm all changes.
tr.Commit()

Catch ex As Exception
’ Display an error message, and roll back all changes.
MessageBox.Show(ex.Message)
tr.Rollback()

End Try

Selecting the Isolation Level
The IsolationLevel property returns an enumerated value that specifies the level
of the current transaction and that’s equal to the value passed to the Begin-
Transaction method, as you can see in the preceding code example. Here’s a
brief description of the isolation levels that ADO.NET supports:

■ Chaos The pending changes from the more highly isolated trans-
actions can’t be overridden. SQL Server doesn’t support this isolation
level.

■ ReadUncommitted No shared (read) locks are issued, and no
exclusive (write) locks are honored, which means that an application
can read data that has been written from inside a transaction but not
committed yet. If the transaction is then rolled back, the data that
was read doesn’t correspond to the data now in the database, a phe-
nomenon known as dirty reads.

Reading 8 ADO.NET 211

■ ReadCommitted (default) Shared (read) locks are issued, and
exclusive (write) locks are honored; this isolation level avoids dirty
reads, but an application isn’t guaranteed to retrieve a given row if
the same query is reexecuted (a problem known as nonrepeatable
reads). Moreover, a reexecuted query might find additional rows
because in the meantime the code running in another transaction has
inserted one or more records (phantom rows).

■ RepeatableRead Exclusive locks are placed on all the rows being
read so that code running in a transaction can’t even read the data
being read from inside another transaction. This isolation level
degrades the scalability of the application but prevents the nonre-
peatable reads problem. Phantom rows are still possible, however.

■ Serializable This level is similar to the RepeatableRead level, but
an exclusive lock is issued on the entire range, and therefore code
running in another transaction can’t even add a new record in the
same range. This isolation level is the least efficient one, but it also
solves the phantom row problem: each transaction truly runs in com-
plete isolation.

For more information about the implications of each isolation level, you
should read a good database book. If you work primarily with SQL Server, I
highly recommend Inside SQL Server 2000, by Kalen Delaney (Microsoft Press).

It should be noted that transactions offer a way to implement pessimistic
concurrency in ADO.NET, even though ADO.NET doesn’t directly support this
type of concurrency, unlike classic ADO. While a transaction is held open, no
other user can read the data you have modified (if the transaction level is
ReadCommitted) or just read (if the transaction is RepeatableRead or Serializ-
able). Transactions are often the only way you have to ensure that the read
and write operations work in a consistent way, but misused transactions can
quickly degrade the overall performance and scalability of entire applications.
So it’s your responsibility to commit or roll back the transaction as soon as
possible.

Nesting Transactions
The OleDbTransaction object exposes a Begin method, which lets you start a
transaction that’s nested in the current transaction. The Begin method takes an
optional isolation level and returns another OleDbTransaction object:

‘ Open an OLE DB connection.
Dim cn As New OleDbConnection(BiblioConnString)
cn.Open()

212 Destination Visual Basic .NET

‘ Open the first (outer) transaction.
Dim tr As OleDbTransaction = cn.BeginTransaction(IsolationLevel.ReadCommitted)
‘ Do some work here.
§
‘ Open a nested (inner) transaction.
Dim tr2 As OleDbTransaction = tr.Begin(IsolationLevel.ReadUncommitted)
§
‘ Roll back the inner transaction.
tr2.Rollback()
§
‘ Commit the outer transaction.
tr.Commit()
‘ Close the connection.
cn.Close()

Not all databases support nested transactions. For example, Access sup-
ports them, but SQL Server doesn’t. In fact, if you run the preceding code on a
connection opened using the SQLOLEDB provider, you get the following error:

Cannot start more transactions on this session.

Working with Named Transactions
SQL Server doesn’t support true nested transactions—that is, transactions that
can be rolled back or committed independently of outer (pending) transac-
tions—and for this reason, the SqlTransaction object doesn’t expose the Begin
method. However, SQL Server supports named transactions. A named transac-
tion is a sort of bookmark that remembers the state of the database at a given
moment so that you can restore that state by using a named rollback command.
You can create as many bookmarks as you need with the SQL Server SAVE
TRAN command. Here’s a fragment of a T-SQL routine that shows how to work
with named transactions:

BEGIN TRAN MainTran
-- Insert, delete, or modify rows here.
§
SAVE TRAN EndOfFirstPart
-- Do some more work here.
§
-- Restore the database contents as they were before the second SAVE TRAN.
ROLLBACK TRAN EndOfFirstPart
§
-- Commit all changes.
COMMIT TRAN

To support named transactions, the BeginTransaction method of the SqlCon-
nection object takes an optional transaction name. In addition, the SqlTransaction

Reading 8 ADO.NET 213

object exposes a Save method: both this method and the Rollback method can
take an optional transaction name. Here’s a Visual Basic .NET snippet that per-
forms the same task as the preceding T-SQL fragment:

Dim cn As New SqlConnection(SqlPubsConnString)
cn.Open()

‘ Open a transaction named MainTran.
Dim tr As SqlTransaction = _

cn.BeginTransaction(IsolationLevel.ReadCommitted, “MainTran”)
‘ Insert, delete, or modify rows here.
§
‘ Create a named save point.
tr.Save(“EndOfFirstPart”)
‘ Do some more work here.
§
‘ Restore the database contents as they were before the second SAVE TRAN.
tr.Rollback(“EndOfFirstPart”)
§
‘ Commit all changes.
tr.Commit()

The Command Object
After you’ve opened a connection, you can decide whether you want to work
in connected or disconnected mode. In the former case, you typically create a
Command object that contains a select query (to read data from the database)
or an action query (to update data) and then run one of its Executexxxx meth-
ods, for which the exact name depends on the type of query.

Table 8-2 summarizes all the main properties and methods of the Com-
mand object. Except for the Disposed event inherited from the Component
class, the Command object has no events.

Table 8-2 Properties and Methods of the Command Object

Category Name Description

Properties CommandText The SQL text of the query.

CommandType An enumerated value that specifies the type of
the query: Text, StoredProcedure, or
TableDirect. (The last value is supported only
by the OLE DB .NET Data Provider when
working with Microsoft Access.)

Connection The Connection object associated with this
command.

(continued)

214 Destination Visual Basic .NET

Transaction The Transaction object corresponding to the
transaction in which this command is executing.

CommandTimeout The number of seconds after which the query
times out; default is 30 seconds. The value 0
means an infinite timeout and should be avoided.

Parameters The collection of parameters associated with
this command.

UpdatedRowSource Specifies how command results are applied to
the DataRow object. It’s meaningful only when
Command is associated with a DataAdapter
object that performs an Update method.

Methods ExecuteNonQuery Executes the action query specified by Com-
mandText and returns the number of rows
affected.

ExecuteReader Executes the select query specified by Com-
mandText and returns the DataReader object
that lets you access the resultset. This method
can take an optional CommandBehavior bit-
coded value that further specifies how the com-
mand works—for example, whether it returns a
single row or whether the connection should
be closed when the method returns.

ExecuteScalar Executes the select query specified by Com-
mandText and returns the scalar value in the first
column of the first row, ignoring all other values.

Cancel Cancels the execution of the Command object;
no error occurs if the command isn’t running.

CreateParameter Creates a Parameter object connected to this
parameterized command.

ResetCommandTimeout Resets the CommandTimeout property to its
default value (30 seconds).

Prepare Creates a compiled version of the command on
the data source; it can work only if Command-
Type is StoredProcedure, even though it might
have no effect.

(SQL Server
provider only)

ExecuteXmlReader Performs that select query specified by Com-
mandText (usually a SELECT FOR XML query)
and returns an XmlReader object that lets you
read the values in the resultset.

Table 8-2 Properties and Methods of the Command Object (continued)

Category Name Description

Reading 8 ADO.NET 215

Creating a Command Object
The key properties of the Command object are CommandText (the SQL text of
the action or select query) and Connection (the connection on which the
query should run). You can set these properties individually, as in the follow-
ing code snippet:

‘ Open a connection.
Dim cn As New OleDbConnection(BiblioConnString)
cn.Open()

‘ Define the command to insert a new record in the Authors table.
Dim sql As String = _

 “INSERT INTO Authors (Author, [Year Born]) VALUES (‘Joe Doe’, 1955)"

‘ Create an action command on that connection.
Dim cmd As New OleDbCommand()
cmd.Connection = cn
cmd.CommandText = sql

‘ Run the query; get the number of affected records.
Dim records As Integer = cmd.ExecuteNonQuery()
Debug.WriteLine(records) ’ => 1

‘ Close the connection.
cn.Close()

Or you can pass these two values to the Command object’s constructor, which
makes for more concise code:

Dim cmd As New OleDbCommand(sql, cn)

If you’ve opened a transaction on the connection, you must enlist the
command in the transaction by assigning the Transaction object to the property
with the same name or you must pass this object to the Command’s constructor:

‘ (This code assumes that you’ve opened a connection and defined a query.)
‘ Begin a transaction.
Dim tr As OleDbTransaction = cn.BeginTransaction

‘ Create an action command, and enlist it in the transaction.
Dim cmd As New OleDbCommand(sql, cn, tr)
‘ Run the query; get the number of affected records.
Dim records As Integer = cmd.ExecuteNonQuery()
‘ Commit (or roll back) the transaction.
tr.Commit()

You get an error if you don’t enlist the Command object in the existing
transaction (more precisely, the most nested transaction being opened on that

216 Destination Visual Basic .NET

connection). Therefore, you can’t help passing the Transaction object to the
constructor method or to the Transaction property. This operation could be per-
formed implicitly by ADO.NET when the Command object is associated with
the connection, so you might wonder why you have to do it manually. The only
reasonable explanation for this behavior I can think of is that in the future it
might be possible to associate the command with a transaction obtained in
some other way—for example, a distributed transaction created by the
Microsoft Distributed Transaction Coordinator (MS DTC). At this time, however,
nothing in the documentation confirms or rejects this hypothesis.

Issuing Database Commands
As you’ve seen in the preceding code snippets, you can perform insert, update,
and delete operations through a Command object by means of the Execute-
NonQuery method, which returns the number of records that were affected by
the statement:

Dim sql As String = _
 “INSERT INTO Authors (Author, [Year Born]) VALUES (‘Joe Doe’, 1955)"

Dim cmd As New OleDbCommand(sql, cn)
‘ Run the query; get the number of affected records.
Dim records As Integer = cmd.ExecuteNonQuery()

Of course, you can update existing records by using the UPDATE SQL
statement and delete existing records with the DELETE statement. There isn’t
much else to say about this method except that—as with all database opera-
tions—you should protect it with a Try block:

Try
’ Run the query; get the number of affected records.
Dim records As Integer = cmd.ExecuteNonQuery()

Catch ex As Exception
’ Process the error here.
§

Finally
’ Always close the connection.
cn.Close()

End Try

Reading Data
You can read data from a data source in three ways: by using the ExecuteReader
method and the DataReader object to read complete resultsets; by using the Exe-
cuteScalar method to read individual values; or by using the ExecuteXmlReader
method and the XmlReader object to read the results of a FOR XML query on a
SQL Server 2000 data source.

Reading 8 ADO.NET 217

Using the ExecuteReader Method
The most common way to query the database in connected mode is through
the ExecuteReader method of the Command object. This method returns a
DataReader object, which you then use to read the resultset one row at a time,
as you’d do with a forward-only, read-only Recordset under classic ADO. There
are actually two versions of this object, OleDbDataReader and SqlDataReader.

‘ Create a query command on the connection.
Dim cmd As New OleDbCommand(“SELECT * FROM Publishers", cn)
‘ Run the query; get the DataReader object.
Dim dr As OleDbDataReader = cmd.ExecuteReader()
‘ Read the names of all the publishers in the resultsets.
Do While dr.Read()

Debug.WriteLine(dr.Item(“Name”))
Loop
‘ Close the DataReader.
dr.Close

I discuss the DataReader object and its methods in greater detail in the
section “The DataReader Object” later in this reading. For now, let me focus on
how you can affect the query by passing an optional CommandBehavior bit-
coded value to the ExecuteReader method. The available values for this argu-
ment are

■ CloseConnection The connection should be closed immediately
after the DataReader object is closed.

■ SingleRow The SQL statement is expected to return a single row
of data. The OLE DB .NET Data Provider uses this information to
optimize the data retrieval operation.

■ SingleResult The SQL statement is expected to return a single sca-
lar value. (In this case, however, you should use the ExecuteScalar
method instead of ExecuteReader, as I explain in the next section.)

■ KeyInfo The query returns column and primary key information
and is executed without locking the selected rows. In this case, the
SQL Server .NET Data Provider appends a FOR BROWSE clause to
the SQL statement, which requires that the table have a time-stamp
field and a unique index. (See SQL Server Books Online for addi-
tional information.)

■ SequentialAccess The query results are read sequentially at the
column level instead of being returned as a whole block to the caller.
You should use this option when the table contains very large text
and binary fields that you read in chunks using the GetChars and

218 Destination Visual Basic .NET

GetBytes methods of the DataReader object. In these circumstances,
this option can improve the performance of your read operations
significantly.

■ SchemaOnly The query returns column information only and
doesn’t affect the database state.

Here’s an example that uses the CloseConnection value:

‘ Run the query; get the DataReader object.
Dim dr As OleDbDataReader = cmd.ExecuteReader(CommandBehavior.CloseConnection)
‘ Process the data.
§
‘ Close the DataReader and (implicitly) the connection.
dr.Close()

The SingleRow option is useful when you’re absolutely sure that the
resultset contains only one row. This is often the case when the WHERE clause
of the query filters a single record by its primary key, as in this example:

‘ Read a single line from the Publishers table.
Dim sql As String = “SELECT * FROM Publishers WHERE PubID=1"
Dim cmd As New OleDbCommand(sql, cn)
‘ Open a DataReader that contains one single row.
Dim dr As OleDbDataReader = cmd.ExecuteReader(CommandBehavior.SingleRow)
‘ Show name and city of this publisher.
dr.Read()
Debug.WriteLine(dr(“Name”) & “ – “ & dr (“City”))
dr.Close

Note that the argument is bit-coded, so you can combine multiple values
using the Or operator:

Dim dr As OleDbDataReader = cmd.ExecuteReader(CommandBehavior.SingleRow _
Or CommandBehavior.CloseConnection)

Using the ExecuteScalar Method
The ExecuteScalar method lets you perform a database query that returns a sin-
gle scalar value in a more efficient way because it doesn’t go through the over-
head to build a resultset:

‘ Define the command to read a single scalar value
Dim sql As String = “SELECT Name FROM Publishers WHERE PubID=1"
‘ Create a command on that connection.
Dim cmd As New OleDbCommand(sql, cn)
‘ Read the value.
Dim pubName As String = cmd.ExecuteScalar().ToString

Reading 8 ADO.NET 219

Another good occasion to use the ExecuteScalar method is for reading the
result of aggregate functions, as in this code snippet:

‘ Read the number of records in the Publishers table.
Dim cmd As New OleDbCommand(“SELECT COUNT(*) FROM Publishers", cn)
Dim recCount As Integer = CInt(cmd.ExecuteScalar())

Remember that the ExecuteScalar method works with any SQL query, and
in all cases it returns the first field of the first row without raising an error if the
query returns multiple columns or multiple rows.

Using the ExecuteXmlReader Method
SQL Server 2000 is able to process FOR XML queries and return data in XML for-
mat. If you connect to the database by using the SQL Server .NET Data Provider,
you can leverage this capability with the ExecuteXmlReader of the SqlCom-
mand object, which returns a System.Xml.XmlReader object that lets you walk
through the resultset. Here’s a code example that uses this feature:

‘ Open a connection to SQL Server 2000.
Dim cn As New SqlConnection(SqlPubsConnString)
cn.Open()
‘ Prepare a FOR XML command.
Dim sql As String = “SELECT pub_name FROM Publishers FOR XML AUTO, ELEMENTS"
Dim cmd As New SqlCommand(sql, cn)
‘ Create the XmlReader.
Dim reader As System.Xml.XmlReader = cmd.ExecuteXmlReader()
‘ Display XML data in a TextBox control.
Do While reader.Read

txtOut.AppendText(reader.Value & ControlChars.CrLf)
Loop
‘ Close the XmlReader and the connection.
reader.Close()
cn.Close()

As you see, the XmlReader works similarly to the DataReader object, with a
Read method that returns True if there are more elements and False when you
arrive at the end of the resultset.

Working with Parameters and Stored Procedures
The SQL command that you pass to a Command object can contain parameters,
an especially useful feature when you’re working with stored procedures. The
exact syntax you can use in the SQL command depends on which data provider
you’re working with, so we’ll examine the two providers separately.

220 Destination Visual Basic .NET

Parameterized Commands
A common misconception is that parameters are useful only when you’re work-
ing with stored procedures. But in fact, you can define a parameterized SQL
command that contains one or more question marks as placeholders, as in this
line of code:

SELECT * FROM Titles WHERE PubId=? AND [Year Published]=?

When you use this syntax—which is valid only with the OLE DB .NET
Data Provider—you must manually create one or more Parameter objects and
add them to the Command object’s Parameters collection in the exact order in
which the parameter appears in the SQL command. You can choose from three
ways of creating a Parameter object: you can use the Parameter’s constructor,
use the Command’s CreateParameter method, or invoke the Add method of the
Parameters collection:

‘ First method: the Parameter’s constructor
Dim par As New OleDbParameter(“PubId", OleDbType.Integer)
par.Value = 156 ’ Set the parameter’s value.
cmd.Parameters.Add(par) ’ Add to the collection of parameters.
Dim par2 As New OleDbParameter(“YearPub", OleDbType.SmallInt)
par2.Value = 1992
cmd.Parameters.Add(par2)

‘ Second method: the Command’s CreateParameter method
Dim par As OleDbParameter = cmd.CreateParameter
‘ Note that setting the name and the type isn’t mandatory.
par.Value = 156
cmd.Parameters.Add(par)
par = cmd.CreateParameter ’ Reuse the same variable.
par.Value = 1992
cmd.Parameters.Add(par)

‘ Third method: passing name and value to the Parameters.Add method
cmd.Parameters.Add(“PubId", 156)
cmd.Parameters.Add(“YearPub", 1992)

(The Parameters collection implements the IList interface, so it exposes all the
usual methods for adding, inserting, and removing elements.) The syntax with
the SQL Server .NET Data Provider is different: it doesn’t support question
marks in queries and requires you to use @ parameters, as in this line of code:

SELECT * FROM Titles WHERE title_id=@TitleId

The code for creating the Parameters collection is similar, but of course
you must use a SqlParameter object instead:

Reading 8 ADO.NET 221

‘ First method: the Parameter’s constructor
Dim par As New SqlParameter(“TitleId", SqlDbType.VarChar)
par.Value = “BU1032” ’ Set the parameter’s value.
cmd.Parameters.Add(par) ’ Add to the collection of parameters.

‘ Second method: the Command’s CreateParameter method
Dim par As SqlParameter = cmd.CreateParameter
par.Value = “BU1032"
cmd.Parameters.Add(par)

‘ Third method: passing name and value to the Parameters.Add method
cmd.Parameters.Add(“TitleId", “BU1032”)

After the Parameters collection is set up, you can call the ExecuteReader
method to retrieve the resultset as usual, or the ExecuteNonQuery method if it
is an action query that doesn’t return data rows. Parameterized commands are
useful when you must perform the same type of query more than once, each
time with different parameter values. The following example shows how you
can extract different rows from the same table without having to create a differ-
ent Command object:

‘ Create a SQL command with one parameter.
Dim sql As String = “SELECT * FROM Publishers WHERE PubID=?"
Dim cmd As New OleDbCommand(sql, cn)
‘ Define the first (and only) parameter, and assign its value.
cmd.Parameters.Add(“PubID", 156)

‘ Read the result.
Dim dr As OleDbDataReader = cmd.ExecuteReader()
‘ No need to loop because we know there is only one row.
dr.Read()
Debug.WriteLine(dr(“Name”))
dr.Close()

‘ Change the parameter’s value, and reexecute the query.
cmd.Parameters(0).Value = 10
dr = cmd.ExecuteReader
dr.Read()
Debug.WriteLine(dr(“Name”))
dr.Close()

Stored Procedures
The substantial difference between executing a simple parameterized SQL com-
mand and calling a stored procedure is that in the latter case, you just specify
the name of the stored procedure in the command text and set the Command-
Type property to StoredProcedure:

222 Destination Visual Basic .NET

‘ Run the byroyalty stored procedure in SQL Server’s Pubs database.
Dim cmd As New SqlCommand(“byroyalty", cn)
cmd.CommandType = CommandType.StoredProcedure
‘ Create the first parameter, and assign it the value 100.
‘ (Note that the parameter name must match the name used in the procedure.)
cmd.Parameters.Add(“@percentage", 100)
‘ Read the result.
Dim dr As SqlDataReader = cmd.ExecuteReader()

You can execute a SQL Server stored procedure by using either the OLE
DB .NET Data Provider or the SQL Server .NET Data Provider, the only differ-
ence being that the former provider doesn’t require that the name you use for
a parameter match the parameter’s name as defined in the stored procedure
itself.

In another difference from parameterized commands, when you’re work-
ing with stored procedures you must account for the type and the direction of
each parameter. In general, the type of each Parameter must match the type of
the argument that the stored procedure accepts; if this doesn’t happen, you
might have problems passing and retrieving a value from that stored procedure.
You can pass the type as the second argument to the Parameter’s constructor by
using an enumerated OleDbType value, which is similar to the data types that
ADO supports:

‘ Create a Parameter of type Single.
Dim param1 As New OleDbParameter(“param1", OleDbType.Single)

When working with strings, you can also specify a size:

Dim param2 As New OleDbParameter(“param2", OleDbType.VarChar, 100)

The same syntax applies to SqlParameter objects, except that you specify
the type by using a SqlDbType enumeration value. In some cases, the name of
this value differs from its OLE DB counterpart:

‘ Create a Single parameter for SQL Server.
Dim param3 As New SqlParameter(“param3", SqlDbType.Float)

By default, all parameters are created as input parameters. If you’re calling
a stored procedure that returns a value through an argument, you must set the
Direction property to either InputOutput or Output. If the stored procedure
returns a value, you must define an additional parameter; the name of this
parameter doesn’t matter as long as it’s the first parameter appended to the
Parameters collection and its Direction property is set to ReturnValue.

To test how to work with output parameters and return values, you can
define a new byroyalty2 stored procedure in SQL Server’s Pubs database by
running this script in SQL Server’s Query Analyzer:

Reading 8 ADO.NET 223

CREATE PROCEDURE byroyalty2 @percentage int, @avgprice float output
AS
-- Return the average price for all titles in the second argument.
SELECT @avgprice= AVG(Price) FROM Titles
-- Return a resultset.
SELECT au_id FROM titleauthor

WHERE titleauthor.royaltyper = @percentage
-- Return the number of titles in the second argument.
DECLARE @numtitles Int
SELECT @numtitles=COUNT(*) FROM titles
RETURN @numtitles

Here’s the complete source code of a routine that invokes the byroyalty2
stored procedure and displays its results in a multiline TextBox control:

Dim cn As New SqlConnection(SqlPubsConnString)
cn.Open()

Dim sql As String = “byroyalty2"
Dim cmd As New SqlCommand(sql, cn)
cmd.CommandType = CommandType.StoredProcedure

‘ Define the return value parameter.
cmd.Parameters.Add(“@numtitles", OleDbType.Integer)
cmd.Parameters(0).Direction = ParameterDirection.ReturnValue
‘ Define the first (input) parameter, and assign its value.
cmd.Parameters.Add(“@percentage", 100)

‘ Define the second (output) parameter, and set its direction.
‘ (A better method for setting the direction and other properties.)
With cmd.Parameters.Add(“@avgprice", SqlDbType.Float)

.Direction = ParameterDirection.Output
End With

‘ Read the result.
Dim dr As SqlDataReader = cmd.ExecuteReader()
Do While dr.Read

txtOut.AppendText(dr(0).ToString & ControlChars.CrLf)
Loop
dr.Close()

‘ You can read the return value and output argument only after
‘ closing the DataReader object.
txtOut.AppendText(“Number of titles = “ & _

cmd.Parameters(“@numtitles”).Value.ToString & ControlChars.CrLf)
txtOut.AppendText(“Average price = “ & _

cmd.Parameters(“@avgprice”).Value.ToString & ControlChars.CrLf)
‘ Close the connection.
cn.Close()

224 Destination Visual Basic .NET

As a remark in the preceding code snippet explains, you can read output
arguments and return values only after you’ve closed the DataReader object.
This is a known problem of SQL Server and doesn’t depend on ADO.NET. (As
a matter of fact, you have the same problem also when calling a SQL Server
stored procedure from ADO.)

When invoking a SQL Server stored procedure that doesn’t have output
parameters or a return value, you can take the following shortcut: just create an
EXEC statement that contains the name of the stored procedure followed by all
its input parameters, as in this code snippet:

Dim sql As String = “EXEC byroyalty 100"
Dim cmd As New SqlCommand(sql, cn)
cmd.CommandType = CommandType.Text

Note that in this case you don’t have to set the CommandType property to
StoredProcedure because from the perspective of ADO.NET, you’re executing a
regular SQL command.

Automatic Population of the Parameters Collection
When working with stored procedures, you can save some time by having
ADO.NET populate the Parameters collection of the Command object automati-
cally by means of the DeriveParameters shared method of the OleDbCommand-
Builder or SqlCommandBuilder class:

‘ Get the parameters for the byroyalty stored procedure in Pubs.
Dim cmd As New SqlCommand(“byroyalty", cn)
cmd.CommandType = CommandType.StoredProcedure

‘ Let the CommandBuilder object populate the Parameters collection.
SqlCommandBuilder.DeriveParameters(cmd)

‘ Show number and names of parameters.
Debug.WriteLine(cmd.Parameters.Count & “ parameters”) ’ => 2 parameters
Debug.WriteLine(cmd.Parameters(0).ParameterName) ’ => @RETURN_VALUE
Debug.WriteLine(cmd.Parameters(1).ParameterName) ’ => @percentage

ADO supports a similar technique based on the Parameters.Refresh
method, but Microsoft initially decided not to make this technique available to
ADO.NET developers because of its horrible performance. In fact, both ADO’s
Refresh method and the ADO.NET DeriveParameters method require a round-
trip to the SQL Server database to acquire the metadata needed to fill the
Parameters collection. Because the signature of a stored procedure rarely
changes after the application is deployed, it makes sense that you burn the
names and the type of the parameters in code to speed up execution.

Reading 8 ADO.NET 225

Even if you don’t count performance problems, filling the Parameters col-
lection automatically isn’t usually a good idea. For example, the preceding code
snippet shows that the DeriveParameters method incorrectly detects a return
value parameter, even when the stored procedure doesn’t really have a return
value. In some circumstances, this method isn’t smart enough to read the exact
type and direction of parameters. For example, if you run the DeriveParameters
method on the byroyalty2 stored procedure that we’ve defined in the preceding
section, you’ll see that the @avgprice output parameter is incorrectly retrieved
as an input/output parameter. You can remedy this problem either by manually
adjusting the Direction property to Output or by assigning a dummy value to
the @avgprice parameter before calling the stored procedure, even if this value
will never be used. If you fail to take either of these steps, the ExecuteReader
method will throw an exception.

Despite its defects, the DeriveParameters method fits the bill during the pro-
totyping phase, but be prepared to replace it with code that populates the Param-
eters collection manually before you ship the application. Here’s a tip: you should
always reference your parameters by their names rather than by their indexes in
the Parameters collection so that you don’t have to change your code if you
switch from automatic to manual creation of the Parameters collection. And don’t
include the return value parameter (if the stored procedure doesn’t have one).

‘ This statement works regardless of how you fill the Parameters collection.
cmd.Parameters(“@percentage”).Value = 100

The DeriveParameters method works in a slightly different way in the two
.NET data providers. As you’ve seen, the parameter names that the SQL Server
.NET Data Provider retrieves have a leading @ character and match their defini-
tions in the stored procedure. This character is missing when you retrieve the
collection of parameters using the OLE DB .NET Data Provider. (The present or
missing @ character is an issue only if you want to change the provider during
the development phase.)

Note The DeriveParameters method was added rather late in the
beta process, which explains why earlier articles and books on
ADO.NET don’t cover it. I suspect that the main reason for its introduc-
tion was the disappointed feedback from earlier adopters who would
have liked to have a mechanism similar to the ADO Parameters.Refresh
method. However, remember that you should use the DeriveParameters
method only during the testing step, and you should populate the
Parameters collection manually in the definitive version of your appli-
cation to avoid an unnecessary round-trip to the server.

226 Destination Visual Basic .NET

The DataReader Object
I summarize the most important properties and methods of the DataReader
object in Table 8-3. The most important of these members are described in the
following sections.

Iterating over Individual Rows
Using the DataReader object couldn’t be simpler: you invoke its Read method
to advance to the next row in the resultset and check its return value to see
whether you have more results (if True) or are at the end of the resultset (if
False). Because of this double function, you can create tight loops based on the
DataReader object:

Do While dr.Read()
’ Process the current row here.
§

Loop
dr.Close()

It’s important that you close the DataReader object when you don’t have
to process any more rows, to release resources on both the client and the server
and make the connection available again for other commands. In fact, you can’t
issue any other command on a connection while a DataReader object is active
on that connection. The only command you can perform on a connection
actively serving a DataReader is the Close method.

You can check whether a connection is available by using its State prop-
erty. The DataReader object doesn’t expose this property, but you can check
whether it has been closed by means of its IsClosed property.

Table 8-3 Properties and Methods of the DataReader Object

Category Name Description

Properties IsClosed Returns True if the DataReader is closed.

FieldCount Returns the number of columns in the
current row.

Item Returns the value of the column with the
specified index or name.

RecordsAffected Returns the number of rows inserted, deleted,
or updated by the SQL statement.

Depth Returns the depth of nesting of the current
row. (The outermost table has a depth of 0.)

Reading 8 ADO.NET 227

Methods Read Advances to the next row and returns True if
there are more rows, False if the end of the
resultset has been found.

Close Closes the DataReader object, releases all the
resources allocated to it, and makes the con-
nection available for other commands.

NextResult Advances to the next resultset and returns True
if there is another resultset. Use this method to
process multiple resultset results, such as those
returned by batch SQL statements and stored
procedures.

GetName Returns the name of the column with the spec-
ified index.

GetOrdinal Returns the index of a column corresponding
to the field name passed as an argument.

IsDBNull Returns True if the column at the specified
index contains a DBNull value.

GetValue Returns the value of a column at the specified
index in its native format.

GetValues Takes an Object array and fills it with the
values from all the columns in the resultset;
returns the number of Object instances in the
array.

GetBoolean, GetByte,
GetChar, GetDateTime,
GetDecimal,
GetDouble, GetFloat,
GetGuid, GetInt16,
GetInt32, GetInt64,
GetString,
GetTimeSpan

Retrieves the strongly typed value of the field
at the specified column index. (GetTimeSpan
isn’t supported by the SQL Server .NET Data
Provider.)

GetBytes Fills a Byte array (or a portion thereof) with the
contents of a binary field; returns the number
of bytes read.

GetChars Fills a Char array (or a portion thereof) with the
contents of a long text field; returns the num-
ber of characters read.

GetFieldType Returns the System.Type object that describes
the type of the field at a given index.

Table 8-3 Properties and Methods of the DataReader Object (continued)

Category Name Description

(continued)

228 Destination Visual Basic .NET

Reading Column Values
A quick look at Table 8-3 shows that the DataReader object provides many
properties and methods that let you read the value of the columns in the
resultset.

The Item read-only property gives you a means to access any field by
either its name or its (zero-based) column index in a way that resembles the
kind of access you perform with the Fields collection of the ADO Recordset:

‘ Read the result into a DataReader object.
Dim dr As OleDbDataReader = cmd.ExecuteReader(CommandBehavior.CloseConnection)

‘ Display the names of all publishers.
Do While dr.Read()

Dim res As String = String.Format(“{0} – {1}", _
dr.Item(“Name”), dr.Item(“City”))

’ Append the result to the current contents of a TextBox control.
txtOut.AppendText(res & ControlChars.CrLf)

Loop
‘ Close the DataReader and the connection.
dr.Close()

GetDataTypeName Returns the name of the source data type
for the column whose index is passed as an
argument.

GetSchemaTable Returns a DataTable that describes the column
metadata.

(SQL Server
provider only)

GetSqlBinary, GetSql-
Boolean, GetSqlByte,
GetSqlDateTime,
GetSqlDecimal, GetSql-
Double, GetSqlGuid,
GetInt16, GetInt32,
GetInt64, GetSqlMoney,
GetSqlSingle, GetSql-
String

Retrieve the strongly typed value of the field at
the specified column index as one of the Sql-
Types.Sqlxxxx data types.

GetSqlValue Gets an Object that’s a representation of the
underlying Data.SqlDbTypeVariant value.

GetSqlValues Takes an Object array and fills it with the value
from all the columns in the resultset; returns
the number of Object instances in the array.

Table 8-3 Properties and Methods of the DataReader Object (continued)

Category Name Description

Reading 8 ADO.NET 229

Item is the default member, so you can make your code more concise by
omitting it:

Dim res As String = String.Format(“{0} – {1}", dr(“Name”), dr(“City”))

You can iterate over all the columns in the resultset by using an index that
goes from 0 to FieldCount <− 1 ; then you can use the GetName method to
retrieve the name of the field and the GetValue method (or the Item property)
to read the field’s value. If you’re dealing with a nullable field, however, you
should protect your code from exceptions by checking a field with the IsDB-
Null method:

‘ Read the result into a DataReader object.
Dim dr As OleDbDataReader = cmd.ExecuteReader(CommandBehavior.CloseConnection)

‘ Display the value of all fields.
Do While dr.Read

’ Prepare the buffer for the values of this row.
Dim res As String = “"
Dim i As Integer

’ Iterate over all fields.
For i = 0 To dr.FieldCount - 1

’ Insert a comma if necessary.
If res.Length > 0 Then res &= “, “
’ Append field name and value.
res &= dr.GetName(i) & “="
’ Protect the code from null values.
If dr.IsDBNull(i) Then

res &= “<NULL>"
Else

res &= dr.GetValue(i).ToString
End If

Next
’ Append to the result text box.
txtOut.AppendText(res & ControlChars.CrLf)

Loop
‘ Close the DataReader and the Connection.
dr.Close()

When you read all the fields in the current row, you can optimize your
code by using the GetValues method, which returns all the fields’ values in an
Object array. The following code snippet uses this method and makes the code
even faster by retrieving the names of all fields once and for all outside the
main loop and by using a StringBuilder object instead of a regular String. After

230 Destination Visual Basic .NET

the value has been moved to an element of the Object array, you must test it
using the IsDBNull function instead of the DataReader’s IsDBNull method:

‘ Run the query; get the DataReader object.
Dim dr As OleDbDataReader = cmd.ExecuteReader(CommandBehavior.CloseConnection)

‘ Build the array of all fields.
Dim fldNames(dr.FieldCount - 1) As String
Dim i As Integer
For i = 0 To dr.FieldCount - 1

fldNames(i) = dr.GetName(i)
Next

‘ Display all fields.
Do While dr.Read

Dim res As New System.Text.StringBuilder(256)
’ Get all the values in one shot.
Dim values(dr.FieldCount - 1) As Object
dr.GetValues(values)

’ Iterate over all fields.
For i = 0 To dr.FieldCount - 1

’ Insert a comma if necessary.
If res.Length > 0 Then res.Append(“, “)
’ Append field name and equal sign.
res.Append(fldNames(i))
res.Append(“=“)
’ Append the field value, or <NULL>.
If IsDBNull(values(i)) Then

res.Append(“<NULL>“)
Else

res.Append(values(i).ToString)
End If

Next
’ Append to the result text box.
res.Append(ControlChars.CrLf)
txtOut.AppendText(res.ToString)

Loop
‘ Close the DataReader and the Connection.
dr.Close()

The OLE DB .NET Data Provider offers several Getxxxx methods to
retrieve field values in their native format, saving you the overhead of going
through a more generic Object variable. Compare how you can retrieve an inte-
ger value with the generic GetValue method and the more specific GetInt32
method:

Reading 8 ADO.NET 231

‘ The generic GetValue method requires type casting.
Dim res As Integer = CInt(dr.GetValue(0))
‘ The specific GetInt32 method does not.
Dim res2 As Integer = dr.GetInt32(0)

Using Specific SQL Server Types
The SQL Server .NET Data Provider also provides the same Getxxxx methods as
the OLE DB provider, with one glaring exception: it doesn’t support the Get-
TimeSpan method. On the other hand, the SQL Server provider supports more
specific GetSqlxxxx methods, which behave much like their Getxxxx counter-
parts except that they return specific SQL Server types defined in the Sys-
tem.Data.SqlTypes namespace:

‘ This code assumes that dr is a SqlDataReader object.
Dim res As Integer = dr.GetSqlInt32(0)

When you’re working with the SQL Server .NET Data Provider, you should
always use these more specific types because they prevent conversion errors
caused by loss of precision and provide faster code as well. This advice is espe-
cially important to follow with the SqlDecimal data type, which provides a pre-
cision of 38 digits instead of the 28 digits that the .NET Decimal type provides.

Table 8-4 summarizes the data types in the System.Data.SqlTypes
namespace and aligns them with the corresponding SQL Server type and with
the corresponding value of the enumerated SqlDbType (defined in Sys-
tem.Data). As you see, some of the SqlTypes correspond to more than one
native SQL Server type.

Table 8-4 SqlTypes and the Corresponding Native SQL Server Types
and SqlDbType Enumerated Values

SqlTypes Native SQL Server SqlDbType Enumerated Value

SqlBoolean bit Bit

SqlByte tinyint TinyInt

SqlInt16 smallint SmallInt

SqlInt32 int Int

SqlInt64 bigint BigInt

SqlSingle real Real

SqlDouble float Float

SqlDecimal decimal Decimal

SqlDateTime datetime DateTime

smalldatetime SmallDateTime

(continued)

232 Destination Visual Basic .NET

Reading Multiple Resultsets
Some databases support multiple statements in one query. For example, you
can send multiple commands to SQL Server, using the semicolon as a separator:

SELECT Name FROM Publishers WHERE PubId=10;
SELECT Name FROM Publishers WHERE PubId=12

Multiple queries let you create batch commands, which minimize the
number of round-trips to the server and network traffic. (One batch command
uses a single network packet to carry multiple queries that would otherwise
require multiple packets.) The DataReader object supports multiple resultsets
by means of the NextResult method, which returns True if there is one more
resultset and False otherwise. The following code snippet shows how to use
this method with any number of resultsets:

‘ Open a connection to the Pubs database on SQL Server.
Dim cn As New SqlConnection(SqlPubsConnString)
cn.Open()

‘ Define a SQL statement with multiple queries.

SqlMoney money Money

smallmoney SmallMoney

SqlString char Char

nchar NChar

ntext NText

nvarchar NVarChar

sysname VarChar

text Text

varchar VarChar

SqlBinary binary Binary

varbinary VarBinary

image Image

timestamp TimeStamp

SqlGuid uniqueindentifier UniqueIdentifier

Object sql_variant Variant

Table 8-4 SqlTypes and the Corresponding Native SQL Server Types
and SqlDbType Enumerated Values (continued)

SqlTypes Native SQL Server SqlDbType Enumerated Value

Reading 8 ADO.NET 233

Dim sql As String = “SELECT pub_name FROM Publishers;SELECT Title FROM titles"
Dim cmd As New SqlCommand(sql, cn)
Dim dr As SqlDataReader = cmd.ExecuteReader()

Dim resCount As Integer
Do

’ Process the next resultset.
resCount += 1
txtOut.AppendText(“RESULTSET #” & resCount.ToString)
txtOut.AppendText(ControlChars.CrLf)

’ Process all the rows in the current resultset.
Do While dr.Read

txtOut.AppendText(dr(0).ToString)
txtOut.AppendText(ControlChars.CrLf)

Loop
txtOut.AppendText(ControlChars.CrLf)

Loop While dr.NextResult
‘ Close the DataReader and the connection.
dr.Close()
cn.Close()

Figure 8-1 shows the outcome of this code.
If the SQL statement contains action queries—such as an INSERT, a

DELETE, or an UPDATE statement—they’re correctly ignored by the NextResult
method because they don’t return any resultsets. (Under the same circumstances,
the NextResultset method of the ADO Recordset object returned a closed Record-
set, so you had to write additional code to handle this special case.)

F20CN02

Figure 8-1. The demo program lets you test several features of the
DataReader object.

234 Destination Visual Basic .NET

❇❇❇

The DataSet Object
Because ADO.NET (and .NET in general) is all about scalability and perfor-
mance, the disconnected mode is the preferred way to code client/server appli-
cations. Instead of a simple disconnected recordset, ADO.NET gives you the
DataSet object, which is much like a small relational database held in memory
on the client. As such, it provides you with the ability to create multiple tables,
fill them with data coming from different sources, enforce relationships
between pairs of tables, and more.

Even with all its great features, however, the DataSet isn’t always the best
answer to all database programming problems. For example, the DataSet object
is great for traditional client/server applications—for example, a Windows
Forms application that queries a database on a networked server—but is almost
always a bad choice in ASP.NET applications and, more generally, in all state-
less environments. An ASP.NET page lives only a short lifetime, just for the time
necessary to reply to a browser’s request, so it rarely makes sense to use a
DataSet to read data from a database, then send the data to the user through
HTML, and destroy the DataSet immediately afterward. (Yes, you might save the
DataSet in a Session variable, but this technique takes memory on the server
and might create server affinity, two problems that impede scalability.)

Exploring the DataSet Object Model
The DataSet is the root and the most important object in the object hierarchy
that includes almost all the objects in the System.Data namespace. Figure 8-2
shows the most important classes in this hierarchy, with the name of the prop-
erty that returns each object.

An important feature of the DataSet class is its ability to define relation-
ships between its DataTable objects, much like what you do in a real database.
For example, you can create a relationship between the Publishers and the
Titles DataTable objects by using the PubId DataColumn that they have in com-
mon. After you define a DataRelation object, you can navigate from one table to
another, using the DataTable’s ChildRelations and ParentRelations properties.

A DataSet object consists of one or more DataTable objects, each one con-
taining data coming from a database query, an XML stream, or code added pro-
grammatically. Table 8-5 summarizes the most important members of the
DataSet class.

Reading 8 ADO.NET 235

F21CN01

Figure 8-2. The DataSet object hierarchy.

"	�	#��	�������������� "	�	#��	����

#��	��������������

$%������&���������

&����������������� �'
�����

"��	���"	�	(�	������������

"	�)���(�	���

"	�)��������������������

"	�)�������������������� "	�)����������

"	�	#��	����

"	�	#��	����

�'
�����

 ������������

 ������������

 ������������

 ������������
"	�	#��)���

"	�	#��

"	�	������

������	���

 ������������

 ������������

 ������������

#������������

"	�	#������������

����������������

"	�	����������������

������	�������������

�����#��	��������������

&	����#��	��������������

$%������&������������������

"��	���)������������

&���	��*�����������

������	�������������

"	�	#��	��������������

"	�	#��	��������������

&�����������������

"	�)���

����	������"	�	������

"	�	���

"	�	+	
������������

"	�	+	
��

+	
������������

 ������������

 ������������

 ������������

 ������������

236 Destination Visual Basic .NET

Table 8-5 Main Properties, Methods, and Events of the DataSet Class

Category Name Description

Properties DataSetName The name of this DataSet object.

Namespace The namespace for this DataSet, used when
importing or exporting XML data.

Prefix The XML prefix for the DataSet namespace.

CaseSensitive True if string comparisons in this DataSet are
case sensitive.

Locale The CultureInfo object containing the locale
information used to compare strings in the
DataSet (read/write).

HasErrors Returns True if there are errors in any of the
DataTable objects in this DataSet.

EnforceConstraints True if constraint rules are enforced when
attempting an update operation.

Tables Returns the collection of child DataTable objects.

Relations Returns the collection of DataRelation objects.

ExtendedProperties Returns the PropertyCollection object used to
store custom information about the DataSet.

DefaultViewManager Returns a DataViewManager object that allows
you to create custom search and filter settings for
the DataTable objects in the DataSet.

Methods AcceptChanges Commits all changes to this DataSet after it was
loaded or since the most recent AcceptChanges
method.

RejectChanges Rejects all changes to this DataSet after it was
loaded or since the most recent AcceptChanges
method.

HasChanges Returns True if the DataSet has changed. It takes
an optional DataRowState argument that lets you
check for modified, inserted, or deleted rows
only.

Merge Merges the current DataSet with another DataSet,
a DataTable, or a DataRow array.

Reset Resets the DataSet to its original state.

Clone Creates a cloned DataSet that contains the identi-
cal structure, tables, and relationships as the cur-
rent one.

Copy Creates a DataSet that has both the same struc-
ture and the same data as the current one.

Reading 8 ADO.NET 237

❇❇❇

Creating a DataTable Object
The code that follows creates a DataSet object that contains an Employees table:

‘ This is at the form level, to be shared among all procedures.
Dim ds As New DataSet()

Sub CreateEmployeesTable()
’ Create a table; set its initial capacity and case sensitivity.
Dim dtEmp As New DataTable(“Employees”)
dtEmp.MinimumCapacity = 100
dtEmp.CaseSensitive = False

’ Create all columns.
’ You can create a DataColumn and then add it to the Columns collection.
Dim dcFName As New DataColumn(“FirstName", GetType(String))
dtEmp.Columns.Add(dcFName)
’ Or you can create an implicit DataColumn with the Columns.Add method.
dtEmp.Columns.Add(“LastName", GetType(String))
dtEmp.Columns.Add(“BirthDate", GetType(Date))

’ When you have to set additional properties, you can use an explicit
’ DataColumn object, or you can use a With block.

Clear Clears all the data in the DataSet.

GetChanges Gets a DataSet that contains all the changes made
to the current one since it was loaded or since
the most recent AcceptChanges method, option-
ally filtered using the DataRowState argument.

ReadXml Reads an XML schema and data into the DataSet.

ReadXmlSchema Reads an XML schema into the DataSet.

GetXml Returns the XML representation of the contents
of the DataSet.

InferXmlSchema Infers the XML schema from the TextReader or
from the file into the DataSet.

WriteXml Writes the XML schema and data from the current
DataSet.

WriteXmlSchema Writes the current DataSet’s structure as an XML
schema.

Events MergeFailed Fires when two DataSet objects being merged
have the same primary key value and the
EnforceConstraints property is True.

Table 8-5 Main Properties, Methods, and Events of the DataSet Class (continued)

Category Name Description

(continued)

238 Destination Visual Basic .NET

With dtEmp.Columns.Add(“HomeAddress", GetType(String))
.MaxLength = 100

End With
’ (When you must set only one property, you can be more concise,
’ even though the result isn’t very readable.)
dtEmp.Columns.Add(“City", GetType(String)).MaxLength = 20

’ Create a calculated column by setting the Expression
’ property or passing it as the third argument to the Add method.
dtEmp.Columns.Add(“CompleteName", GetType(String), _

 “FirstName + ’ ’ + LastName”)

’ Create an ID column.
Dim dcEmpId As New DataColumn(“EmpId", GetType(Integer))
dcEmpId.AutoIncrement = True ’ Make it auto-increment.
dcEmpId.AutoIncrementSeed = 1
dcEmpId.AllowDBNull = False ’ Default is True.
dcEmpId.Unique = True ’ All key columns should be unique.
dtEmp.Columns.Add(dcEmpId) ’ Add to Columns collection.

’ Make it the primary key.
Dim pkCols() As DataColumn = {dcEmpId}
dtEmp.PrimaryKey = pkCols
’ You can also use a more concise syntax, as follows:
dtEmp.PrimaryKey = New DataColumn() {dcEmpId}

’ This is a foreign key, but we haven’t created the other table yet.
dtEmp.Columns.Add(“DeptId", GetType(Integer))

’ Add the DataTable to the DataSet.
ds.Tables.Add(dtEmp)

End Sub

The MinimumCapacity property offers an opportunity to optimize the per-
formance of the application: the first rows that you create—up to the number
defined by this property—won’t require any additional memory allocation and
therefore will be added more quickly.

As you see in the listing, you define the type of a DataColumn by using a
System.Type object. So most of the time you’ll use the Visual Basic GetType
function for common data types such as String, Integer, and Date. The many
remarks explain the several syntax variations that you might adopt when you’re
adding a new column to the table’s schema.

Some columns might require that you set additional properties. For exam-
ple, you should set the AllowDBNull property to False to reject null values, set
the Unique property to True to ensure that all values in the column are unique,
or set the MaxLength property for String columns. You can create auto-increment-
ing columns (which are often used as key columns) by setting the AutoIncrement

Reading 8 ADO.NET 239

property to True and optionally setting the AutoIncrementSeed and AutoIncre-
mentStep properties:

’ Create an ID column.
Dim dcEmpId As New DataColumn(“EmpId", GetType(Integer))
dcEmpId.AutoIncrement = True ’ Make it auto-increment.
dcEmpId.AutoIncrementSeed = 1
dcEmpId.AllowDBNull = False ’ Default is True.
dcEmpId.Unique = True ’ All key columns should be unique.

You can set the primary key by assigning a DataColumn array to the Pri-
maryKey property of the DataTable object. In most cases, this array contains
just one element, but you can create compound keys made up of multiple col-
umns if necessary:

‘ Create a primary key on the FirstName and LastName columns.
‘ (Create the DataColumn arrays on the fly.)
dtEmp.PrimaryKey = New DataColumn() _

{dtEmp.Columns(“FirstName”), dtEmp.Columns(“LastName”)}

The DataTable built in the CreateEmployeesTable procedure also contains
a calculated column, CompleteName, evaluated as the concatenation of the
FirstName and LastName columns. You can assign this expression to the
Expression property or pass it as the third argument of the Add method. The
“Working with Expressions” section later in this chapter describes which oper-
ators and functions you can use in an expression.

Note Interestingly, you can store any type of object in a DataSet,
including forms, controls, and your custom objects. When using a col-
umn to store an object, you should specify the column type with Get-
Type(Object). If the object is serializable, it will be restored correctly
when you write the DataSet to a file and read it back. (If the object isn’t
serializable, you get an error when you attempt to serialize the
DataSet.) Note that the object state isn’t rendered correctly as XML
when you issue the WriteXml method, however.

❇❇❇

The DataAdapter Class
You can create a DataSet object, load it with data produced by your application
(or read from a text file), create constraints and relationships, and define calcu-
lated fields. In other words, you can use the DataSet as a sort of scaled-down,

240 Destination Visual Basic .NET

client-side database that your code defines and fills with data. While this func-
tionality can be very useful in many scenarios, the majority of .NET applications
have to process data coming from a real database, such as Access, SQL Server,
or Oracle.

The key to using the DataSet in this way is the DataAdapter object, which
works as a connector between the DataSet and the actual data source. The
DataAdapter is in charge of filling one or more DataTable objects with data
taken from the database so that the application can then close the connection
and work in a completely disconnected mode. After the end user has per-
formed all his or her editing chores, the application can reopen the connection
and reuse the same DataAdapter object to send changes to the database.

Admittedly, the disconnected nature of the DataSet makes life for us
developers more complex, but it greatly improves its versatility, in my opinion.
You can now fill a DataTable with data taken from any data source—whether
it’s SQL Server, a text file, or a mainframe—and process it with the same rou-
tines, regardless of its origin. The decoupled architecture based on the DataSet
and the DataAdapter makes it possible to read data from one source and send
updates to another source, should it be necessary. You have a lot more freedom
when working with ADO.NET but also many more responsibilities.

All the code samples that follow assume that a proper connection string
has been defined previously and stored in one of the following global variables:

‘ Connection string to Biblio.mdb using the OLE DB .NET Data Provider
Public BiblioConnString As String = “Provider=Microsoft.Jet.OLEDB.4.0;” _

& “Data Source=C:\Program Files\Microsoft Visual Studio\VB98\Biblio.mdb"
‘ Connection string to SQL Server’s Pubs using the OLE DB .NET Data Provider
Public OledbPubsConnString As String = “Provider=SQLOLEDB.1;Data Source=.;” _

& “Integrated Security=SSPI:Initial Catalog=Pubs"
‘ Connection string to Pubs using the SQL Server .NET Data Provider
Public SqlPubsConnString As String = “Data Source=.;” _

& “Integrated Security=SSPI:Initial Catalog=Pubs”

Introducing the DataAdapter
The first thing you need to know about the DataAdapter is that there’s actually
one DataAdapter class for each .NET data provider, so you have the OleDb-
DataAdapter and the SqlDataAdapter classes. All DataProvider objects expose
the same set of properties and methods because they inherit from the DbData-
Adapter abstract class. All the .NET data providers that are to be released in the
future will include their own DataAdapter because the DataAdapter must know
how to read from and update a specific data source. Except for their names and
a few other details—such as how they deal with parameters—you use the Ole-
DbDataAdapter and the SqlDataAdapter in exactly the same way. (See Table 8-6
for their main properties, methods, and events.)

Reading 8 ADO.NET 241

Table 8-6 Main Properties, Methods, and Events of the OleDbDataAdapter and
SqlDataAdapter Classes

Category Name Description

Properties SelectCommand The SQL statement used to read the data source.

DeleteCommand The SQL statement used to delete rows in the
data source.

InsertCommand The SQL statement used to insert rows in the data
source.

UpdateCommand The SQL statement used to update rows in the
data source.

TableMappings The collection of table mappings, which maintain
the correspondence between columns and tables
in the data source and columns and tables in the
DataSet.

MissingMappingAction The action to take when incoming data doesn’t
have a matching table or column.

MissingSchemaAction The action to take when an existing DataSet
schema doesn’t match incoming data.

AcceptChangesDuringFill Determines whether the AcceptChanges method
is called after a DataRow has been added to the
DataTable.

Methods Fill Adds or refreshes rows in a DataSet with data
coming from a DataAdapter or an ADO
Recordset.

FillSchema Adds a DataTable to the DataSet and configures
the schema of the new table based on schema in
the data source.

Update Updates the data source with the appropriate
insert, update, and delete SQL statements.

GetFillParameters Gets the parameters set by the user when execut-
ing a SQL SELECT statement.

Events RowUpdating Fires before sending a SQL command that
updates the data source.

RowUpdated Fires after sending a SQL command that updates
the data source.

FillError Fires when an error occurs during a Fill operation.

242 Destination Visual Basic .NET

Reading Data from a Database
The DataAdapter’s constructor is overloaded to take zero, one, or two argu-
ments. In its most complete form, you pass to it a SQL SELECT statement (or an
ADO.NET Command object containing a SQL SELECT statement) and a Connec-
tion object, as in this code snippet:

Dim cn As New OleDbConnection(BiblioConnString)
cn.Open()

‘ Create a DataAdapter that reads and writes the Publishers table.
Dim sql As String = “SELECT * FROM Publishers"
Dim da As New OleDbDataAdapter(sql, cn)

Or you can create a DataAdapter and then assign an ADO.NET Command
object to its SelectCommand property:

da = New OleDbDataAdapter()
da.SelectCommand = New OleDbCommand(sql, cn)

❇❇❇

Reading 8 ADO.NET 243

Adding a DataAdapter Object to Our Program
The DataAdapter is the object that connects to the database to fill the memory
resident DataSet. Then the DataAdapter connects to the database again to
update the data on the basis of the operations performed while the DataSet
held the data.

In the past, data processing has been primarily connection-based. Now, in
an effort to make multitiered applications more efficient, data processing is
turning to a message-based approach that revolves around chunks of informa-
tion. At the center of this approach is the DataAdapter, which provides a link
between a DataSet and its data source that’s used to retrieve and save data. It
accomplishes these processes by means of requests to the appropriate SQL
commands made against the data source.

1. In the toolbox, double-click the SqlDataAdapter control to add a
SqlDataAdapter to our program. When the SqlDataAdapter is
added, the Data Adapter Configuration Wizard is displayed, as
shown in Figure 8-3. Click Next, and follow the steps to configure
the new SqlDataAdapter.

F10TL14

Figure 8-3 The opening screen for the Data Adapter Configuration Wizard.

From Coding Techniques for Microsoft Visual Basic .NET by John Connell. pp. 414-421. (Redmond:
Microsoft Press. 2002.) Copyright © 2002 by John Connell.

244 Destination Visual Basic .NET

2. Select the database connection to the Northwind database we just
built, as shown in Figure 8-4. (Notice that at this point you can still
create a new connection by clicking New Connection.) Click Next.

F10TL15

Figure 8-4 Selecting our database connection in the wizard.

Remember when I mentioned that the SQLClient DataAdapter
is a bit trickier to set up than the OleDB DataAdapter? This is where
the wizard earns its pay. We’ll let the wizard add the SQL statements
by selecting the Use SQL Statements option, shown in Figure 8-5.
Click Next to continue.

F10TL16

Figure 8-5 Letting the wizard do the work.

Reading 8 ADO.NET 245

3. The next screen, shown in Figure 8-6, lets us use a standard SQL
statement to select the data we want the DataAdapter to retrieve
from the database. In this case, type in the SELECT statement shown
in Figure 8-6, which selects all the records and all the fields from the
Customers table in the Northwind database.

F10TL17

Figure 8-6 Selecting the data we want to retrieve.

4. Click the Advanced Options button. You’ll see the Advanced SQL
Generation Options dialog box, shown in Figure 8-7. Leave the three
options checked by default. You can see that the wizard will gener-
ate all the SQL statements for us and also take care of the details of
detecting changes between the data in the database and our data set.

F10TL18

Figure 8-7 Advanced options in the wizard.

246 Destination Visual Basic .NET

5. Click OK to close the Advanced SQL Generation Options dialog box.
Now click the Query Builder button to display the Query Builder,
shown in Figure 8-8. You can see that all columns for all records are
selected. If you wanted to modify the conditions for retrieving data
from the database, you would do that here. Let’s keep things simple
for our first example and leave the SELECT statement as is.

F10TL19

Figure 8-8 The Query Builder.

6. Click OK to close the Query Builder dialog box, and then click Next in the
configuration wizard. Using our instructions, the wizard now goes to work
constructing the underpinnings of the SQL connection and commands.

7. Click Finish to dismiss the wizard, whose work is now done. We’ll
soon see that the work was not trivial.

I described the SqlDataAdapter as a bridge between the data source and
the memory-resident data set. The wizard added the commands for that bridge,
which are illustrated in Figure 8-9.

F10TL20

Figure 8-9 The wizard builds its bridge.

������� ��������	�
���

�����������	
�����������	
�
	��������	
�����������	

�,-

Reading 8 ADO.NET 247

Finishing the User Interface
Before we look at the data and the program’s code in more detail, let’s finish the
interface for our form. Add a DataGrid component and two command buttons from
the Windows Forms tab of the toolbox to the form. Set the properties for the con-
trols as listed in Table 8-7. Your form should now look something like Figure 8-10.

F10TL21

Figure 8-10 Adding interface controls to our form.

Tip Take a moment and bring up the properties sheet for the Data-
Grid control. Click the AutoFormat hyperlink displayed under the list of
properties. An Auto Format dialog box will be displayed. Click a few of
the formats to get an idea of how you can display your data. When
you’ve finished exploring the various built-in formats, click Cancel to stick
with the default view. When you start writing your own .NET database
programs for production, you can add a lot of eye candy options for free.

Table 8-7 Properties for the SQLDataGrid Form

Object Property Value

Form Text SQLClient Example

DataGrid Defaults

Button Text &Retrieve Data

 Name btnRetrieve

Button Text &Update Database

 Name btnUpdate

248 Destination Visual Basic .NET

A Sneak Preview of Our Data from the DataAdapter
Let’s take a quick look at the data that we’ll retrieve. Right-click on the form,
and then select Preview Data. You can see the data that will be displayed when
our program comes to life.

1. In the Data Adapter Preview dialog box, be sure that SqlDataAdapter1
is selected in the Data Adapters list, as shown in Figure 8-11, and then
click the Fill Dataset button. This dialog box provides all sorts of infor-
mation, including how large the data set will be in bytes.

F10TL22

Figure 8-11 Previewing our data in the Data Adapter Preview dialog
box.

2. Close the Data Adapter Preview dialog box, right-click the form
again, and select Generate Dataset to display the Generate Dataset
dialog box, shown in Figure 8-12. Accept the defaults, and then
click OK.

Reading 8 ADO.NET 249

F10TL23

Figure 8-12 The Generate Dataset dialog box.

When you dismiss the Generate Dataset dialog box, a new
DataSet object will be added to your program. Right-click on the
DataSet object to display its properties dialog box, shown in
Figure 8-13.

F10TL24

Figure 8-13 The properties dialog box for the new DataSet object.

Notice the two hyperlinks at the bottom of the properties dialog
box. One leads you to a view of the database schema; the other
shows a view of the data set properties.

250 Destination Visual Basic .NET

3. Click the View Schema hyperlink. You’ll see the database schema,
which is the template of the table our data adapter will use to pull
the records from the database. The schema is shown in Figure 8-14.

F10TL25

Figure 8-14 The database schema.

Part IV

ASP.NET

253

Reading 9

ASP.NET and Web Services
We’re now going to look at how we can use Visual Basic .NET to render Web
pages, using the same techniques we’ve learned when building a Windows
Forms application. I’ll also describe Web services, which are used to communi-
cate with interfaces of remote components. If the use of Web services sounds
strange, hang on until you reach the second part of the reading. Web services
are going to become the next big thing on the Internet, and Microsoft .NET is
poised to make this happen.

Web Forms (the controls and classes .NET provides for building Web
pages) and Web services (programmable application logic accessible by stan-
dard Internet protocols) are part of the framework for Internet functionality
included in Visual Basic .NET and are known by the umbrella term ASP.NET. If
you have previously worked with Active Server Pages (ASP), you will be sur-
prised at how much different and more efficient ASP.NET is. ASP.NET encom-
passes a completely new programming object model. It replaces the Visual
Basic 6 WebClasses and DHTML pages. Not only that, but the ASP.NET pro-
gramming model is also more consistent and easier to use.

A Look Back at ASP
ASP is a powerful model and is the right tool for most jobs. The information sys-
tems department I manage has written and is running more than 100 ASP pages
that clients (internal and external) use to access various pieces of functionality
within our organization. But if you’ve had the chance to work with ASP, you
know that it has some drawbacks. You know that you have to write code to

From Coding Techniques for Microsoft Visual Basic .NET by John Connell. pp. 497-548. (Redmond:
Microsoft Press. 2002.) Copyright © 2002 by John Connell.

254 Destination Visual Basic .NET

perform any operation, and you quickly notice that you are dealing with spa-
ghetti code. The unstructured nature of ASP code—where everything is placed
in an ASP page—often offends purists. Yes, you can use include statements, but
doing that requires more work. You usually find ASP logic script code mixed
with HTML tags for presentation. This mix, of course, does not help readability
or debugging, and because ASP uses interpreted script, performance problems
arise in some cases. But in spite of the difficulties, ASP has evolved to become
the foremost tool in the Windows-oriented Web programmer’s toolbox.

One thing that always bites Web developers is the need for multiple
browser support. When we design ASP pages for external clients, we must
either program to the lowest common denominator of browser or write extra
classes to support each browser the clients might use. Not only that, but no
state management is available unless the programmer writes acres of code to
persist values from page to page. Of course, ASP has the Application and Ses-
sion objects, but there are two potential problems with these. First, they make
scaling a high-volume site difficult. Second, because they are run on the server,
if the host has a server farm, you can’t be sure that the next page won’t be
served from a completely different machine. Luckily, ASP.NET solves these
thorny problems.

Why ASP.NET?
The compelling nature of ASP.NET will draw Web programmers toward its orbit
for the following reasons:

■ Language independence. ASP.NET allows you to use compiled
languages, providing better performance and cross-language
compatibility.

■ Simplified development. ASP.NET makes even the richest pages

straightforward and easy to write.

■ Separation of code and content. Each Web Form has a code mod-
ule with the same name but with the extension .vb. This so-called
code behind the page contains the program logic code, while the

Web Form contains the visual components.

■ Improved scalability. New session-state features make it easy to

create Web Forms that work on Web server farms (multiple servers).

■ Support for multiple clients. ASP.NET controls can automatically
detect the client and optimize themselves for a consistent look and
feel. You no longer have to write separate code for different browsers.

Reading 9 ASP.NET and Web Services 255

■ New Web Forms controls. The new controls can output HTML 3.2
for down-level browsers while taking advantage of the runtime
libraries for enhanced interactivity on richer clients. Our programs
can now output to a whole new range of platforms such as wireless
phones, palm pilots, and handheld pagers and devices.

■ Server-side processing. ASP.NET changes each page into a server-
side object. More properties, methods, and events can be used with
your code to create content dynamically. The runat=“server”
attribute converts the HTML element into a server-side control that is
visible and therefore programmable within ASP.NET on the server.
Events raised by Web Form controls are detected, and the appropri-
ate code is executed on the server in response to these events.

Note ASP.NET is written entirely in the new C# language.
All ASP.NET pages have the .aspx file extension, which allows
both .asp and .aspx files to be run on the same machine under
the existing ASP runtime.

Getting from There to Here
In some ways, everything you’ve learned in this book up to now has
poised us to write ASP.NET programs. You will soon see how similar that
is to creating Windows Forms programs in .NET. You drag and drop con-
trols and set properties in the same manner you do with Windows Forms.
You use the technologies you’ve learned about so far—the .NET Frame-
work; object-oriented programming; events, properties, and methods;
ADO.NET; and XML—and put them together in Web Forms.

When I hire a new programmer, I’m amazed at how many applicants
are proud to say they understand Visual Basic. The applicants describe
how they know various esoteric uses of items such as control arrays or
undocumented memory pointers. What they fail to realize is that I’m look-
ing for someone that understands database design, n-tier architecture,
ActiveX Data Objects (ADO), XML, HTML, Dynamic HTML (DHTML),
object-oriented programming, Transmission Control Protocol/Internet Pro-
tocol (TCP/IP), the Open Systems Interconnection (OSI) protocol stack,
custom ActiveX control construction, network security, firewalls, and so

(continued)

256 Destination Visual Basic .NET

Getting from There to Here (continued)

on. Many of these technologies and concepts are implemented in Visual
Basic. Learning the language is only the first part—not the be-all and end-
all, but rather a beginning.

While it’s easy to find people who know Visual Basic, it’s difficult to
find people who understand the gestalt of how programs operate in a dis-
tributed environment. And if you look back at how much ground we’ve
covered in this book to get to this point, you might be pleasantly surprised
at how most of what you’ve learned will be directly applicable to writing
ASP.NET programs.

Several years ago, when graphical tools such as Visual Basic came on
the scene, many software developers were concerned that programming
would become so easy that they would be out of a job. After all, even
accountants could drag buttons to a form and set properties. However,
quite the opposite has happened. Programming has become exponen-
tially more abstract. It turns out that we need the graphical capabilities so
that we can concentrate on application design and fitting the pieces
together. A Visual Basic .NET program has many moving parts—espe-
cially programs running on the Internet. Luckily, Visual Basic .NET pro-
vides some very powerful graphical tools that help get Web sites up and
running quickly.

Our First Web Form
To give you an immediate sense of how powerful Web Forms are, we’ll create
a simple program that uses the new calendar control. The program will display
a calendar from which the user must select a date before submitting the page.
If a date is not selected, a field validator will notify the user and the page won’t
be sent.

Start a new ASP.NET Web application project with the name WebForms, as
shown in Figure 9-1. Notice that the location of the file will be the local host. If
you are running Internet Information Services (IIS) or Personal Web Server on
the same machine as Visual Studio .NET, the local host will usually be C:\Inet-
pub\wwwroot.

Reading 9 ASP.NET and Web Services 257

FIGURE 13-1

Figure 9-1 Create an ASP.NET Web application named WebForms.

The default workspace for an ASP.NET Web application, shown in Figure
9-2, looks a bit different from what we’re used to seeing. The toolbars are
slightly different, and the design surface is white, but the overall feel is the
same. (The message you see on the form is not part of our application; it’s sim-
ply a note from Visual Basic .NET telling us which layout mode is being used.)

FIGURE 13-2

Figure 9-2 The default ASP.NET Web application workspace.

258 Destination Visual Basic .NET

Tip To change the layout of the ASP.NET Web application work-
space, right-click on the display area and select Properties. When the
Document Property Pages dialog box appears, you can change the
page layout. The page layout options you use will be primarily a matter
of preference. The FlowLayout setting allows the user to add text and
hard paragraph breaks to the page, which is converted into HTML
code. When the default GridLayout setting is selected, the controls are
placed on the surface of the page but are not interspersed with HTML
code, as happens in FlowLayout. If you have ever used Microsoft
FrontPage, you are familiar with the WYSIWYG style, which is a huge
improvement over earlier designs.

The Solution Explorer reveals that a few more files are required when
developing Web Forms rather than Windows Forms, as you can see in Figure
9-3. The classes that include the visual components are located in the
System.Web namespace. Table 9-1 lists and describes the files in our Web-
Forms project.

FIGURE 13-3

Figure 9-3 Web Forms applications have more files than Windows
Forms applications.

Reading 9 ASP.NET and Web Services 259

New Server Controls
If you take a look at the Web Forms tab in the toolbox, shown in Figure 9-4,
you can see the names of quite a few new controls. These controls are referred
to as server controls and are similar to the Windows Forms controls we’ve been
working with. Each control provides a consistent set of properties and methods.
In addition, these controls manage state, can be manipulated in code, and pro-
vide a limited set of events to which we can add our program logic.

FIGURE 13-4

Figure 9-4 Web Forms server controls.

Table 9-1 The Files in Our WebForms Project

File Description

AssemblyInfo.vb An optional project information file that contains metadata
about the assemblies in a project, such as name, version,
and culture information.

Web.config An XML-based file that contains configuration information
for ASP.NET resources.

Global.asax An optional file for handling application-level events. This
file resides in the root directory of an ASP.NET application.
When deployed, this project’s WebService1.dll file will con-
tain the “code-behind” file associated with the .asax file. I’ll
be covering code-behind files shortly.

WebForms.vsdisco An optional XML-based file that contains links (URLs)
to resources providing discovery information for a Web
service.

WebForm1.aspx The user interface file we are now working with.

260 Destination Visual Basic .NET

Another set of controls available for Web Forms appears on the HTML tab,
shown in Figure 9-5. These controls are referred to as HTML server controls.
Each of these controls is basically a one-to-one match for the HTML controls
found on current Web pages. These controls are not sophisticated and have no
intelligence for handling how they appear with various browsers. HTML server
controls were provided to update existing pages to the new server controls.
Unless you are updating pages already created, I’d suggest you stick with the
server controls on the Web Forms tab.

FIGURE 13-5

Figure 9-5 HTML server controls.

ASP.NET server controls are incredibly powerful. They have a more con-
sistent and flexible object model than the ASP object model that is familiar to
classic Visual Basic programmers. When a control is served to the client, it is
rendered in HTML automatically. Server controls contain automatic browser
detection logic and can customize and optimize their output. The new controls
can also perform data binding.

In addition to the HTML server controls and the Web Forms server con-
trols, we also have new validation controls. Field validation has always been
the bane of ASP developers. Addressing the problem required a few more acres
of code, but that’s no longer the case. The validation controls are wired to a
control such as a text box, and they take care of our needs, such as constraints
on numeric-only or required fields.

Let’s go ahead and add controls from the Web Forms tab to our designer.
Add a text box, a calendar, a button, and a RequiredFieldValidator. Position the
controls roughly as shown in Figure 9-6.

Reading 9 ASP.NET and Web Services 261

FIGURE 13-6

Figure 9-6 Add the controls shown here.

The HTML Presentation Template
Notice the Design and HTML options at the bottom of the designer window. A
Web Form consists of two pieces: an HTML-based template that contains the
layout of the page, and a code module that contains the code behind the page.
Click the HTML tab to see the following code that will be sent to a browser. The
code will look familiar to those of you who have worked with ASP. You really
don’t need to know how to read HTML, but this code provides insight into how
Web Forms do their magic.

<%@ Page Language="vb” AutoEventWireup="false"
Codebehind="WebForm1.aspx.vb” Inherits="WebForms.WebForm1"%>

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>

<HEAD>
<title></title>
<meta name="GENERATOR” content=

“Microsoft Visual Studio.NET 7.0">
<meta name="CODE_LANGUAGE” content="Visual Basic 7.0">
<meta name="vs_defaultClientScript” content="JavaScript">
<meta name="vs_targetSchema"

content="http://schemas.microsoft.com/intellisense/ie5">
</HEAD>
<body MS_POSITIONING="GridLayout">

<form id="Form1” method="post” runat="server">
<asp:TextBox id="TextBox1” style="Z-INDEX: 101;

(continued)

262 Destination Visual Basic .NET

LEFT: 32px; POSITION: absolute; TOP: 27px"
runat="server” Width="233px"></asp:TextBox>

<asp:Calendar id="Calendar1” style="Z-INDEX: 102;
LEFT: 35px; POSITION: absolute; TOP: 61px"
runat="server” Width="233px"></asp:Calendar>

<asp:RequiredFieldValidator id="RequiredFieldValidator1"
style="Z-INDEX: 103; LEFT: 44px; POSITION: absolute;
TOP: 263px” runat="server"
ErrorMessage="RequiredFieldValidator">

</asp:RequiredFieldValidator>
<asp:Button id="Button1” style="Z-INDEX: 104;

LEFT: 150px; POSITION: absolute; TOP: 295px"
runat="server” Width="112px” Text="Submit"></asp:Button>

</form>
</body>

</HTML>

The Structure of a Web Form
Visual Basic .NET Web Forms are based on a Microsoft ASP.NET technology in
which code that runs on the server dynamically generates Web page output to
the client browser. Take a look at the first line with the @Page directive.

<%@ Page Language="vb” AutoEventWireup="false"
Codebehind="WebForm1.aspx.vb” Inherits="WebForms.WebForm1"%>

Web Forms pages are built on the ASP.NET Page framework, which means
that each Web Forms page is an object that derives from the ASP.NET Page
class. Page objects are compiled and automatically cached.

A Page object also acts as a container for the various controls. When a user
requests a Web Forms page from a server, the Page framework runs the Web
Forms Page object and all the individual controls on it. It then converts the out-
put of the Page class and of the controls to HTML that can be rendered in a
browser. In addition, the Page framework supports controls that can be pro-
grammed for user interaction with your Web Forms pages. User actions in a
form are captured and processed by the Page framework in a way that lets you
treat them as standard events.

The @Page directive tag also defines characteristics of the page. First of all,
the directive indicates that the language will be Visual Basic (instead of C#, for
example). AutoEventWireUp determines whether the Page_Load event handler
is automatically wired to the OnPageLoad event. Setting the value to False
means that we need to provide our own code for this handler if required.

The next statement is the rather cryptic Codebehind = “WebForm.aspx.vb”.
This statement is necessary because the code that drives the page is actually
placed in another file. This file is the code behind the interface defined in
WebForm1.aspx. I’ll examine that file in detail shortly, but briefly, it contains a
class definition that is used as the base class for the Web Forms page. This

Reading 9 ASP.NET and Web Services 263

particular base class will be used in conjunction with code in this file to gener-
ate the HTML that reaches the user. Web Forms essentially separate the user
interface (WebForm.aspx) from the code that implements it (Web-
Form.aspx.vb). The Web Forms Page framework and the relationships between
these files are shown in Figure 9-7.

Figure 13-7

Figure 9-7 The relationships between the Web Forms Page framework
files.

Within the ASP.NET Page class model, the entire Web Forms page is really
an executable program that generates output that is then sent to the browser.
The ASP.NET Page class model makes developing a Web Forms application
identical to developing a Windows Forms application, and it is a quantum leap
in functionality for ASP developers. Separating our class, WebForm1.aspx.vb, as
the code-behind file is not only easier to debug (trust me on this one), but you
can now let the designers work on the user interface for a Web page while the
programmers work on the code behind it all.

Our code-behind class WebForm1 inherits from the Page class that lives in
the System.Web.UI namespace. The Page class contains the properties, methods,
and events in the Web Forms page framework.

Public Class WebForm1
Inherits System.Web.UI.Page

Our user interface file, WebForm1.aspx, inherits from the code-behind
class.

<%@ Page Language="vb” AutoEventWireup="false"
Codebehind="WebForm1.aspx.vb” Inherits="WebForms.WebForm1"%>

Both files are then compiled into a DLL that is run from the server.

������������������

.�
���/�	��%�0

�	��%����

����1
��������	�������

.�
���/�	��%�����

������������������

��������������������������
	�����	��

����������.�
��������������	�����

+��������������	��������������1

��������	�������������������������
���������������������	���

.�
�������	�������������������������
����1
��������	��������

#�����	���������������������������������

264 Destination Visual Basic .NET

The Controls
Web Forms server controls are referenced with the syntax <asp:ControlName>.
All of the properties of the control are set within the <asp:ControlName ….>
and </asp:ControlName> tags. The calendar control is given an ID of
Calendar1, the default name of the calendar when it’s drawn on the form. Then
some style and location properties are set. Finally the critical runat=“server”
attribute is provided, which makes all of this code work.

<asp:Calendar id="Calendar1” style="Z-INDEX: 102;
LEFT: 35px; POSITION: absolute; TOP: 61px"
runat="server” Width="233px"></asp:Calendar>

If the runat=“server” attribute is left out, we are effectively providing cli-
ent-side code, which will fail miserably if the control uses any server-side style
coding. Note that the syntax for controls is based on XML, so you’ll get an error
if you inadvertently omit the closing tags.

The beauty of Web Forms server controls is that we have full access to
their properties and events through the Properties window (just as we do with
their Windows Forms brethren) and can receive instant feedback in the code or
design environment whenever we make changes.

Viewing the Code-Behind File
Return to Design mode and choose Code from the View menu to display the
code-behind file, WebForm1.aspx.vb. This file is where the Visual Basic .NET
code we use to handle the logic for the page lives. By now you should be quite
familiar with this code, so I won’t spend time on it here.

Public Class WebForm1
Inherits System.Web.UI.Page
Protected WithEvents Calendar1 As _

System.Web.UI.WebControls.Calendar
Protected WithEvents TextBox1 As _

System.Web.UI.WebControls.TextBox
Protected WithEvents Button1 As _

System.Web.UI.WebControls.Button
Protected WithEvents RequiredFieldValidator1 As _

System.Web.UI.WebControls.RequiredFieldValidator

#Region " Web Form Designer Generated Code "

'This call is required by the Web Form Designer
<System.Diagnostics.DebuggerStepThrough()> _
Private Sub InitializeComponent()

End Sub

(continued)

Reading 9 ASP.NET and Web Services 265

Private Sub Page_Init(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Init
'CODEGEN: This method call is required by the
' Web Form Designer.
'Do not modify it using the code editor.
InitializeComponent()

End Sub

#End Region

Private Sub Page_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load
'Put user code to initialize the page here

End Sub
End Class

Setting the Properties on Our Web Page
Return to the design WebForm1.aspx form, and right-click the calendar control.
Select Auto Format to bring up the Calendar Auto Format dialog box, shown in
Figure 9-8. Select the Professional 1 scheme, and then click OK. Setting this
property will make our page look pretty sophisticated.

FIGURE 13-8

Figure 9-8 The Professional 1 scheme provides a sophisticated look for
a Web page.

Arrange the controls as shown in Figure 9-9, and then set the properties
for the controls as listed in Table 9-2.

266 Destination Visual Basic .NET

FIGURE 13-9

Figure 9-9 Arrange the controls as shown here.

Adding the Calendar Control Code
Double-click the calendar control. The template for the SelectionChanged event
handler will be created automatically. Add a single line of code that will take
the date the user selects and display it in the text box. Notice that several built-
in formats are available for us. In this example, we’ll use the ToLongDateString
format.

Private Sub Calendar1_SelectionChanged(_
ByVal sender As System.Object,_
ByVal e As System.EventArgs) _

Table 9-2 Properties for the WebForm Controls

Object Property Value

Text box ID (like Name in Win-
dows)

tbDate

Calendar Keep defaults

Button ID btnSubmit

Text &Submit

RequiredFieldValidator1 ControlToValidate tbDate (from the drop-
down list)

ErrorMessage “Please enter a date!”

(continued)

Reading 9 ASP.NET and Web Services 267

Handles Calendar1.SelectionChanged

tbDate.Text = Calendar1.SelectedDate.ToLongDateString

End Sub

Running the Web Form
Go ahead and run the Web Form by pressing F5. The browser is invoked, and
your page is displayed, as you can see in Figure 9-10. Click the Submit button
without selecting a date. Notice that the RequiredFieldValidator becomes visible
and displays our error message. No code was required to accomplish this,
which will make any grizzled ASP programmer smile. We were able to display
this page—with a sophisticated calendar, text box, button, and field validation
control—with only a single line of code. This is nothing short of amazing.

FIGURE 13-10

Figure 9-10 The WebForms application in action.

When the Submit button is clicked, the date is submitted back to the
server. By default, a button control on a Web Form application is a submit but-
ton that posts data back to the server. You can provide an event handler for the
Click event to programmatically control the actions performed when a submit
button is clicked. In our case, we didn’t write any code for the button. Still,
when it is pressed, it attempts to post data back to the server. It couldn’t here
because the required field tbDate is empty.

Now select a date from the calendar, and click the Submit button once
more. This time we are successful. The date is displayed in the text box in the
long date format, as you can see in Figure 9-11.

268 Destination Visual Basic .NET

FIGURE 13-11

Figure 9-11 The text box shows dates in the long date format.

Examining the HTML Sent to the Browser
Run the WebForms application again, but before you select a date, click the
View Source menu option from Internet Explorer. I mentioned that ASP.NET
pages and controls can remember their state between calls to the server. Let’s
see how this magic is accomplished. Examine the first few lines of the HTML
our program sent to the browser.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>

<HEAD>
<title></title>

<meta name="GENERATOR” content="Microsoft Visual
Studio.NET 7.0">

<meta name="CODE_LANGUAGE” content="Visual Basic 7.0">
<meta name="vs_defaultClientScript"

content="JavaScript">
<meta name="vs_targetSchema”

content="http://schemas.microsoft.com/intellisense/ie5">
</HEAD>
<body MS_POSITIONING="GridLayout">

<form name="Form1” method="post” action="WebForm1.aspx"
language="javascript” onsubmit="ValidatorOnSubmit();"
id="Form1">

<input type="hidden” name="__VIEWSTATE” value="dDwtMzQ0NzE0MzI4Ozs” />

Reading 9 ASP.NET and Web Services 269

Notice the text string in the hidden input field with the name
_VIEWSTATE. It is the hidden _VIEWSTATE field that encapsulates the state of
the form. This information is used when the form is posted back to the server
to re-create the user interface, keep track of changes, and so on. Essentially it
holds the state of the form and controls.

Click a date on the calendar, and examine the source code from the
browser again. Notice that the _VIEWSTATE string has grown quite a bit. It con-
tains the selected date, changes to the calendar, and other information. As you
can imagine, on sophisticated Web forms, this string can grow quite large.

<input type="hidden” name="__VIEWSTATE” value="dDwtMzQ0NzE0M
zI4O3Q8O2w8aTwxPjs+O2w8dDw7bDxpPDM+Oz47bDx0PEAwPHA8cDxsPFNEO
z47bDxsPFN5c3RlbS5EYXRlVGltZSwgbXNjb3JsaWIsIFZlcnNpb249MS4wL
jI0MTEuMCwgQ3VsdHVyZT1uZXV0cmFsLCBQdWJsaWNLZXlUb2tlbj1iNzdhN
WM1NjE5MzRlMDg5PDIwMDEtMDktMjY+Oz47Pj47Pjs7Ozs7Ozs7Ozs+Ozs+O
z4+Oz4+Oz4=“ />

The _VIEWSTATE string will remember the form’s state and thus any val-
ues that have been submitted. It’s important to keep in mind that the server has
nothing to do with maintaining this state information. Remembering the values
is performed entirely by the _VIEWSTATE string. The server requires no
resources to maintain the form’s state and absolutely no state is being stored on
the server. Instead, the values are posted to the server using standard methods.
When the server posts back to the page, the _VIEWSTATE string prepopulates
the form with the previous values.

The _VIEWSTATE string is an elegant method of storing a Web page’s
state. Because HTTP is a stateless protocol, Web pages are created from scratch
each and every time a round trip between the server and the client occurs. After
a Web page is served, the server is finished with the page and no further con-
nection with the client is maintained. Web pages are stateless, and no values
from Web page variables are maintained on the server. Not only that, but also
in a Web server environment in which a user might get one page from one
server and the next page from a totally different server (because of load balanc-
ing), using _VIEWSTATE permits the page to hold its own state. ASP.NET gets
around this serious limitation and behaves as though the server remembers
each and every detail of each page.

The Web Form state information is tokenized, which means it is translated
into a compressed form. And because HTTP does not permit binary objects to
be sent, the tokens are all text based. Preliminary tests at Microsoft have
revealed that even with very long _VIEWSTATE strings, performance is compa-
rable to other more complex state management techniques.

270 Destination Visual Basic .NET

Note ASP.NET does not support Visual Basic Scripting Edition. The
default language is Visual Basic. ASP.NET code is compiled into inter-
mediate language and then executed by the common language runtime.

If you look at the rest of the source code that’s sent to the browser, you’ll
notice that each of our Web Forms controls is converted to HTML for display in
the browser. We drew the text box on the Web Form, but the ASP.NET run-time
engine did all the coding for us.

<input name="tbDate” type="text” readonly="readonly"
 id="tbDate” style="border-style:Outset;height:26px;
 width:350px;LEFT: 38px; POSITION: absolute; TOP: 34px” />

For the sake of brevity, I’ll show only a portion of the HTML used to gen-
erate the calendar. We are several levels of abstraction removed from having to
provide all this code ourselves. We can now program a consistent object model
of a graphical control, yet the ASP.NET run-time engine will take our graphical
calendar control and convert it to HTML 3.2 to ensure that it can be consistently
displayed on even older browsers. We can draw a calendar control on our Web
Form, and that control is converted to HTML for us. Cool.

<table id="Calendar1” cellspacing="0” cellpadding="2"
bordercolor="White” border="0” style="color:Black;
background-color:White;border-color:White;border-width:1px;
border-style:solid;font-family:Verdana;font-size:9pt;
height:190px;width:350px;border-collapse:collapse;LEFT: 34px;
POSITION: absolute; TOP: 72px">

<tr><td colspan="7” style="background-color:White;
border-color:Black;border-width:4px;border-style:solid;">
<table cellspacing="0” border="0” style="color:#333399;
font-family:Verdana;font-size:12pt;font-weight:bold;
width:100%;border-collapse:collapse;">

<tr><td valign="Bottom” style="color:#333333;font-size:8pt;
font-weight:bold;width:15%;">

Building a Loan Payment Calculator
Where I work, we’ve built a Web-based loan origination system. Clients can
enter various parameters and see which loan products they qualify for. Then we
pass some XML files to Fannie Mae for credit analysis and receive our response
in XML. This data is parsed, and an e-mail message is sent back to the client. We
then use Simple Object Access Protocol (SOAP) to pass e-mail messages around

Reading 9 ASP.NET and Web Services 271

to the various internal departments. This system reduces the time it takes to
return an acknowledgment to the user from days to a few minutes. Best of all,
this system is available 24 hours a day, 7 days a week.

Let’s build a very simple online calculator that includes user interaction.
The program will let users enter the amount they want to borrow, an interest
rate, and the term (in months) over which they want to repay the loan. The fin-
ished product is shown in Figure 9-12.

FIGURE 13-12

Figure 9-12 The finished online calculator application.

We will have to write some validation code to ensure the information the
user enters is valid. We will also add a hyperlink control to enable navigation to
another page, one that displays the loan payment schedule. The hyperlink will
be disabled until legitimate information is entered and a monthly payment is
calculated. When the user clicks the Calculate button and the payment is calcu-
lated, the Payment Schedule hyperlink is enabled and the user can navigate to
another page, as shown in Figure 9-13.

Notice in Figure 9-14 that on the loan payment schedule page, the values
from the first page are retained and are used to populate a Web Forms data grid.
We can show some useful information such as how much of the payment goes to
principal and how much to interest. The PrincipalRemaining and PaidToDate col-
umns provide a good roadmap of how much of the loan is left to be paid. We will
build a table from scratch, populate it with the loan information, and bind it to the
data grid. This program will also demonstrate how to navigate from page to page
as well as how to cache variables from one page to use on another.

272 Destination Visual Basic .NET

FIGURE 13-13

Figure 9-13 The calculator application enables the Payment Schedule
hyperlink after it calculates a payment.

FIGURE 13-14

Figure 9-14 The calculated values populate a Web Forms data grid.

Reading 9 ASP.NET and Web Services 273

Building Our Loan Application Project
Start a new Web Forms project and call it Loan Application. On the default
form, add the controls listed in Table 9-3 and set their properties as described.
The form should look something like Figure 9-15.

FIGURE 13-15

Figure 9-15 Your form should look similar to this.

Table 9-3 Properties for the Loan Application Controls

Object Property Value

Label Name lblTitle

Font Verdana

Bold True

Underlined True

Text The Pavlova, Ltd. Loan
Calculator

Label Name lblAmount

Text How much do you want to
borrow?

Text box Name tbAmount

Text ""

Label Name lblRate

Text Interest Rate

Text box Name tbRate

Text ""
(continued)

274 Destination Visual Basic .NET

We want to add the months in which to repay the loan to the drop-down
list. Right-click the drop-down list, and then select Properties. Select the Items
property box and then click the ellipsis to display the ListItem Collection Editor
dialog box. Add the numbers shown in Figure 9-16, representing 15 years—
from 12 through 180 months.

Label Name lblTerm

Text Term of Loan (in months)

Drop-down list Name ddlTerm

Button Name btnCalculate

Text Calculate

Label Name lblMonthly

Text ""

Range validator ID rvAmount

ControlToValidate tbAmount

MaximumValue 150000

MinimumValue 1000

ErrorMessage The loan must be between
$1,000 and $150,000

Type Currency

Required field
validator

ID rfvAmount

ControlToValidate tbAmount

ErrorMessage Please enter a loan amount

Regular expres-
sion validator

ID revRate

ControlToValidate tbRate

ErrorMessage Please enter a numeric rate in
the format X.X

ValidationExpression \d*[.]{0,1}\d*

Required field
validator

ID rfvRate

ControlToValidate tbRate

ErrorMessage Please enter an interest rate

Hyperlink ID hlSchedule

Text Payment Schedule

Table 9-3 Properties for the Loan Application Controls (continued)

Object Property Value

Reading 9 ASP.NET and Web Services 275

FIGURE 13-16

Figure 9-16 Add these values.

Adding Code to the Code-Behind Form
Right-click on the designer surface and select View Code to open the file
WebForm1.aspx.vb, which is our code-behind form. Each .aspx Web Form that
we create has its associated .aspx.vb code module behind it. This module con-
tains our business logic. The relationship between the two forms is shown in
Figure 9-17.

FIGURE 13-17

Figure 9-17 The relationship between a Web Form and its code-behind
form.

WebForm1.aspx.vb contains the code that responds to events fired from
the Web Form. Add these two Imports statements before the WebForm1 class
statement.

(�.�
����	��%�0

(�.�
���

(�.�
����	��%

2��������������������	!�����(�.�
����

��	������������

���	���

'*

&	������3
4	��3

���	���

'*

&	������3
4	��3

276 Destination Visual Basic .NET

Imports System.Math
Imports System.Web.Caching

Public Class WebForm1

Inherits System.Web.UI.Page

Now add the following code to the Page_Load event handler. This code
simply initializes our drop-down list and disables the hyperlink.

Private Sub Page_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

‘Put user code to initialize the page here

If Not IsPostBack Then
ddlTerm.SelectedIndex = 0
hlSchedule.Enabled = False

End If
End Sub

Private Sub btnCalculate_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnCalculate.Click

calculatePayment()
hlSchedule.Enabled = True

End Sub

Private Sub calculatePayment()
Dim iLoanAmount As Integer = CInt(tbAmount.Text)
Dim sRate As Single = (CSng(tbRate.Text) / 100)
Dim iterm As Integer = CInt(ddlTerm.SelectedItem.Value)

Dim sPayment As Single = Pmt(sRate / 12, iterm, _
-iLoanAmount, 0, DueDate.BegOfPeriod)

lblMonthly.Text = “Monthly Payment: “ & _
Math.Round(sPayment, 2).ToString(“C”)

Cache(“LoanAmount”) = iLoanAmount
Cache(“Rate”) = sRate
Cache(“Term”) = iterm
Cache(“Payment”) = Math.Round(sPayment, 2)

End Sub

The Life of a Web Form
A Web Form has four basic states in its life cycle—initialization, loading the
page, event handling, and clearing up resources.

Reading 9 ASP.NET and Web Services 277

■ Page initialization. The Page_Init event is fired when a page is ini-
tialized. At this point, controls perform all initialization required to
create and set up each instance.

■ Page load. The Page_Load event occurs after initialization. Here the
page checks to see whether it is being loaded for the first time. It also
performs data binding, reads and updates control properties, and
restores the state saved from a previous client request.

■ Event handling. Every action on a Web Form fires an event that
goes to the server. Essentially there are two views of a Web Form—
client view and server view. All processing of data is performed on
the server. When an event is fired, the event goes to the server and
returns the corresponding data.

■ Cleanup. This stage is the last one to occur when a form is ready to

be discarded. The Page_Unload event fires and does such cleanup
work as closing files, closing database connections, and discarding

objects.

How Our Program Works
When the Page_Load event fires, all the controls have been instantiated. There
are tasks (such as initializing controls) that we want to perform only when the
page first loads. Using the Page class’s IsPostBack property, we can do just that.
IsPostBack gets a value indicating whether the page is being loaded in response
to a client postback or whether it is being loaded and accessed for the first time.
If the page load is not in response to a client postback, we know that the page
is being loaded for the first time. Here we simply select the first item in our drop-
down list (so that we have a current value) and disable the hyperlink control.

Private Sub Page_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

‘Put user code to initialize the page here

If Not IsPostBack Then
ddlTerm.SelectedIndex = 0
hlSchedule.Enabled = False

End If
End Sub

When the user clicks the Calculate button, our validation controls perk up
their ears. If any field is empty or contains an invalid value, the user is

278 Destination Visual Basic .NET

prompted to fix whatever is wrong and the code in the button’s Click event
does not fire. When all the validation criteria are met, the routine calculatePay-
ment is called. We know that when this routine is called, we will receive a solid
value because we validated each of the fields.

I like to use controls such as drop-down lists with predefined values. The
man-machine interface is the most difficult to program because users can do
anything imaginable—and many things unimaginable. But by populating a
drop-down list with valid data, users can select only a valid value.

Private Sub btnCalculate_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnCalculate.Click

calculatePayment()
hlSchedule.Enabled = True

End Sub

The calculatePayment routine does the heavy lifting. We can initialize the
first three variables based on values in the form’s controls. Remember, these
variables are stored as text values, so we simply cast them as the correct
numeric values of integer or single. The rate must be divided by 100 because a
rate of 8.2 is really 0.082 when used in calculations.

Private Sub calculatePayment()
Dim iLoanAmount As Integer = CInt(tbAmount.Text)
Dim sRate As Single = (CSng(tbRate.Text) / 100)
Dim iterm As Integer = CInt(ddlTerm.SelectedItem.Value)

Determining the payment is simple because Visual Basic .NET has a built-
in financial function named Pmt. This function returns a Double value (we use
a Single in our code) specifying the payment for an annuity on the basis of peri-
odic, fixed payments and a fixed interest rate. We pass in the value of the vari-
ables taken from the Web Form and place them as parameters to the Pmt
function. The loan amount is given a negative sign because it returns a negative
amount, so we make it positive. There is no future value so that value is 0.

PMT(RATE, Number of Periods, Loan Amount, _
Future Value, Due Date)

We again take advantage of the new Visual Basic .NET feature of dimming
and initializing this variable on the same line.

Dim sPayment As Single = Pmt(sRate / 12, iterm, _
-iLoanAmount, 0, DueDate.BegOfPeriod)

We imported the Math library because we wanted the Round method that
it includes. This method will display our value with only two decimal values
instead of 10, which would normally be shown. Rounding values like this is an
added touch that separates professional software from the rest.

Reading 9 ASP.NET and Web Services 279

lblMonthly.Text = “Monthly Payment: “ & _
Math.Round(sPayment, 2).ToString(“C”)

It’s necessary to retain the values we got from this form and pass them to
another form that will display the payment schedule. That bit of work is simple
with the Cache class, which implements the cache for a Web Forms application.
One instance of this class is created per application domain, and it remains
valid as long as the application domain remains active. As long as our program
is running, its Cache object remains intact. We simply add to the Cache with the
following syntax:

Cache(“Key”) = value

Here’s the relevant code from our program:

Cache(“LoanAmount”) = iLoanAmount
Cache(“Rate”) = sRate
Cache(“Term”) = iterm
Cache(“Payment”) = Math.Round(sPayment, 2)

You can improve your application’s performance by storing your objects
and values in the cache. The cache is global to the ASP.NET application, is
thread safe, and implements automatic locking so that it is safe for you to access
your cached objects and values concurrently from more than one page.

Taking a Closer Look at Our Drop-Down List
Take a look at the HTML code behind our WebForm1.aspx file by clicking
HTML in the lower left side of the designer. You can see that the drop-down list
control has the asp: directive along with various attributes that deal with its size
and position.

<asp:dropdownlist id="ddlTerm” style="Z-INDEX: 107;
LEFT: 24px; POSITION: absolute; TOP: 188px"
runat="server” Height="22px” Width="104px">

<asp:ListItem Value="12">12</asp:ListItem>
<asp:ListItem Value="24">24</asp:ListItem>
<asp:ListItem Value="36">36</asp:ListItem>
<asp:ListItem Value="48">48</asp:ListItem>
§

</asp:dropdownlist>

Remember that when the form is run, we programmatically select the first
element in the drop-down list to ensure that we have a valid value. If you look
at the HTML source within the browser as your page is displayed, you can see
that the item is selected in the HTML code.

280 Destination Visual Basic .NET

<option selected="selected” value="12">12</option>
<option value="24">24</option>
<option value="36">36</option>
<option value="48">48</option>

Then, when the user selects a value from the drop-down list and clicks the
Calculate button and a postback occurs, the code is changed to show that the
user selected a new value.

<option value="12">12</option>
<option value="24">24</option>
<option value="36">36</option>
<option value="48">48</option>
<option selected="selected” value="60">60</option>
<option value="72">72</option>

Adding the Payment Schedule Page
Now it’s time to add another Web Form to our program. This page will hold the
payment schedule. After we have this page set up, we can set the hyperlink
property for our control on the input page so that it will navigate to the pay-
ment schedule page. Click Project | Add Web Form, select the Web Form tem-
plate, and keep the default name WebForm2.aspx, as shown in Figure 9-18.

FIGURE 13-18

Figure 9-18 Add another Web Form to the program.

Return to the WebForm1 main page to complete our remaining task—
assigning the NavigateURL property of our hyperlink control. Right-click on the

Reading 9 ASP.NET and Web Services 281

control and select Properties. Click the ellipsis next to NavigateURL to display
the Select URL dialog box, shown in Figure 9-19. Select WebForm2.aspx.

FIGURE 13-19

Figure 9-19 Select WebForm2.aspx in the Select URL dialog box.

Return to the payment schedule form (WebForm2.aspx), and add two
labels and a data grid. We want to change the default look of the form to some-
thing a bit more interesting. Right-click on the data grid, and select Auto For-
mat. Select the Colorful 5 scheme. Our form is shown in Figure 9-20.

FIGURE 13-20

Figure 9-20 Add two labels and a data grid.

Set the properties of the labels and data grid as shown in Table 9-4.

282 Destination Visual Basic .NET

Right-click on the designer, and then select View Code. The second code-
behind form, this one named WebForm2.aspx.vb, is added to your project.

Adding Our Class Code
Add the following two Imports statements at the top of the class:

Imports Loan_Application.WebForm1

Imports System.Web.Caching

Public Class WebForm2
Inherits System.Web.UI.Page
Protected WithEvents dgSchedule As _

System.Web.UI.WebControls.DataGrid
Protected WithEvents lblTitle As _

System.Web.UI.WebControls.Label
Protected WithEvents lblDetails As _

System.Web.UI.WebControls.Label

After the class and control definitions, add the following variables and
routines. We will be using some of these variables in more than one location, so
place them in the class-level area so that they can be seen throughout the entire
class.

Dim dsSchedule As DataSet
Dim tblTable As DataTable
Dim iLoanAmount As Integer
Dim sRate As Single
Dim iTerm As Integer
Dim sPayment As Single

Table 9-4 Properties for the WebForm2.aspx Controls

Object Property Value

Label ID lblTitle

Font/Size Larger

Text Loan Payment Schedule

Label ID lblDetails

Text ""

Data grid ID dgSchedule

CellPadding 5

CellSpacing 2

Reading 9 ASP.NET and Web Services 283

Dim colColumn1 As DataColumn
Dim colColumn2 As DataColumn
Dim colColumn3 As DataColumn
Dim colColumn4 As DataColumn
Dim colColumn5 As DataColumn
Dim colColumn6 As DataColumn

Private Sub Page_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load
‘Put user code to initialize the page here

iLoanAmount = Cache(“LoanAmount”)
sRate = Cache(“Rate”)
iTerm = Cache(“Term”)
sPayment = Cache(“Payment”)
lblDetails.Text = “Loan Amount: “ & _

iLoanAmount.ToString(“C”) & “ Rate: “ & _
sRate.ToString(“P”) & “ Term: “ & _
iTerm.ToString & “ months.”

‘Build the dataset and table
constructTable()
calculateSchedule()

End Sub

Private Sub calculateSchedule()

Dim iInstallment As Integer
Dim drDataRow As DataRow
Dim sPrincipal As Single
Dim sPaidToDate As Single = 0
Dim sTotalPrincipal As Single = iLoanAmount

For iInstallment = 1 To iTerm
drDataRow = dsSchedule.Tables(“Schedule”).NewRow
dsSchedule.Tables(“Schedule”).Rows.Add(drDataRow)
drDataRow(“Installment”) = iInstallment
drDataRow(“Payment”) = sPayment.ToString(“C”)

sPrincipal = PPmt(sRate / 12, iInstallment, iTerm, _
-iLoanAmount, 0, DueDate.BegOfPeriod)

drDataRow(“Principal”) = Math.Round(sPrincipal, _
2).ToString(“C”)

drDataRow(“Interest”) = (sPayment - _
sPrincipal).ToString(“C”)

sTotalPrincipal -= sPrincipal
(continued)

284 Destination Visual Basic .NET

drDataRow(“PrincipalRemaining”) = _
sTotalPrincipal.ToString(“C”)

sPaidToDate += sPayment
drDataRow(“PaidToDate”) = sPaidToDate.ToString(“C”)

dsSchedule.AcceptChanges()
Next

With dgSchedule
.PageSize = iTerm
.DataSource = _

New DataView(dsSchedule.Tables(“Schedule”))
.DataBind()

End With
End Sub

Private Sub constructTable()
‘Instantiate the dataset and table
dsSchedule = New DataSet(“PaymentSchedule”)
tblTable = New DataTable(“Schedule”)
dsSchedule.Tables.Add(tblTable)

colColumn1 = New DataColumn(“Installment”)
colColumn1.DataType = System.Type.GetType(“System.Int32”)

colColumn2 = New DataColumn(“Payment”)
colColumn2.DataType = System.Type.GetType(“System.String”)

colColumn3 = New DataColumn(“Principal”)
colColumn3.DataType = System.Type.GetType(“System.String”)

colColumn4 = New DataColumn(“Interest”)
colColumn4.DataType = System.Type.GetType(“System.String”)

colColumn5 = New DataColumn(“PrincipalRemaining”)
colColumn5.DataType = System.Type.GetType(“System.String”)

colColumn6 = New DataColumn(“PaidToDate”)
colColumn6.DataType = System.Type.GetType(“System.String”)

With tblTable.Columns
.Add(colColumn1)
.Add(colColumn2)
.Add(colColumn3)
.Add(colColumn4)
.Add(colColumn5)
.Add(colColumn6)

End With

End Sub

Reading 9 ASP.NET and Web Services 285

How the Calculator Works
When the page loads, we read the values we stuffed in the cache and assign
them to our class-level variables. The details of the loan are displayed in the lbl-
Details label. Note that we can use the formatting method of the ToString
method to quickly and painlessly format our output.

Private Sub Page_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load
‘Put user code to initialize the page here

iLoanAmount = Cache(“LoanAmount”)
sRate = Cache(“Rate”)
iTerm = Cache(“Term”)
sPayment = Cache(“Payment”)
lblDetails.Text = “Loan Amount: “ & _

iLoanAmount.ToString(“C”) & “ Rate: “ & _
sRate.ToString(“P”) & “ Term: “ & _
iTerm.ToString & “ months."

‘Build the dataset and table
constructTable()
calculateSchedule()

End Sub

In our constructTable routine, a DataSet object and table are instantiated.
The table is then added to the new data set. Six columns are created and given
names that will be shown as the column titles. The first column will hold an
integer because this column will display the payment number. However, we
want to format the rest of the fields and display them as currency, so they are
all made to hold the String data type. Finally, each of the six columns are added
to the table columns collection.

Private Sub constructTable()
‘Instantiate the dataset and table
dsSchedule = New DataSet(“PaymentSchedule”)
tblTable = New DataTable(“Schedule”)
dsSchedule.Tables.Add(tblTable)

colColumn1 = New DataColumn(“Installment”)
colColumn1.DataType = System.Type.GetType(“System.Int32”)

colColumn2 = New DataColumn(“Payment”)
colColumn2.DataType = System.Type.GetType(“System.String”)

colColumn3 = New DataColumn(“Principal”)
colColumn3.DataType = System.Type.GetType(“System.String”)

colColumn4 = New DataColumn(“Interest”)
colColumn4.DataType = System.Type.GetType(“System.String”)

(continued)

286 Destination Visual Basic .NET

colColumn5 = New DataColumn(“PrincipalRemaining”)
colColumn5.DataType = System.Type.GetType(“System.String”)

colColumn6 = New DataColumn(“PaidToDate”)
colColumn6.DataType = System.Type.GetType(“System.String”)

With tblTable.Columns
.Add(colColumn1)
.Add(colColumn2)
.Add(colColumn3)
.Add(colColumn4)
.Add(colColumn5)
.Add(colColumn6)

End With
End Sub

Now that the table has been dynamically created and added to the data
set, it can be populated. The procedure-level variables are dimmed—no sur-
prises here.

Private Sub calculateSchedule()

Dim iInstallment As Integer
Dim drDataRow As DataRow
Dim sPrincipal As Single
Dim sPaidToDate As Single = 0
Dim sTotalPrincipal As Single = iLoanAmount

Essentially, we loop through from 1 to the number of months, perform
calculations, and then bind the information to the data grid. For each iteration
of the loop, a new DataRow object is added, created from the Schedule table in
the data set. That new empty row is then added to the Schedule table. Recall
that we gave each of the columns names such as “Installment” and “Payment”
when we created the table. Now that we have a new data row, we can easily
access the columns in the row by their names. The Installment column will con-
tain the number of months from 1 to the term of the loan. The Payment column
will always contain the same value—the fixed payment each month—so we
simply add that value. Again, notice that we format the value by converting it to
“C”, for currency.

For iInstallment = 1 To iTerm
drDataRow = dsSchedule.Tables(“Schedule”).NewRow
dsSchedule.Tables(“Schedule”).Rows.Add(drDataRow)
drDataRow(“Installment”) = iInstallment
drDataRow(“Payment”) = sPayment.ToString(“C”)

Visual Basic has another handy built-in financial function, PPmt. This
function returns a value specifying the principal payment for a given period of

Reading 9 ASP.NET and Web Services 287

an annuity based on periodic, fixed payments and a fixed interest rate. By pass-
ing in the rate (divided by 12 to represent a single month), the payment, the
term of the loan, the amount, 0, and whether the payment is due at the begin-
ning or end of the period, we get the principal amount. That amount is then
rounded, formatted, and placed in the Principal column of that row.

sPrincipal = PPmt(sRate / 12, iInstallment, iTerm, _
-iLoanAmount, 0, DueDate.BegOfPeriod)

drDataRow(“Principal”) = Math.Round(sPrincipal, _
2).ToString(“C”)

We can easily deduce how much of the payment goes toward interest by
simply subtracting the principal from the payment.

drDataRow(“Interest”) = (sPayment - _
sPrincipal).ToString(“C”)

The total principal to be paid (that is, the loan amount) is decremented by
the principal paid for this single payment. The amount is formatted and added
to the remaining principal column of the row.

sTotalPrincipal -= sPrincipal
drDataRow(“PrincipalRemaining”) = _

sTotalPrincipal.ToString(“C”)

We initialize how much we have paid to date to 0 at the beginning of the
routine and then increment it for each payment made. The user can then see
how much he or she has paid into the loan for each payment. That value is then
added to the correct column of the row. Finally we add the changes to the data
set for that new row.

sPaidToDate += sPayment
drDataRow(“PaidToDate”) = sPaidToDate.ToString(“C”)

dsSchedule.AcceptChanges()

We wrap up the routine by setting how many rows the data grid displays
to the number of months of the loan. A DataView object that contains the
Schedule table with all the new rows is assigned to the DataSource property of
the data grid. Finally we bind the DataView object to the data grid and it is dis-
played.

With dgSchedule
.PageSize = iTerm
.DataSource = New _

DataView(dsSchedule.Tables(“Schedule”))
.DataBind()

End With

288 Destination Visual Basic .NET

After all this, you should make an important note. All this code is for logic
processing and none for displaying the data on the Web Form. On our Web
Forms, we used the same object models for the controls that we used in Windows
Forms. And the code behind is just like Windows Forms code. This is a mile-
stone in Web development. Programming for the Web is nearly identical to pro-
gramming for Windows!

Tracing Our Program
A useful way to find out what is happening in our program is to enable tracing.
In the HTML section of the WebForm1.aspx form, add the attribute
Trace=“True” to the first line.

<%@ Page Language="vb” AutoEventWireup="false"
Codebehind = “WebForm1.aspx.vb” Trace="True"
Inherits = “Loan_Application.WebForm1"%>

By adding this attribute, you can get some handy information about the
page, including its Session ID and the timing information to display the page.
This information is shown in Figure 9-21. (The Visible property of each control
on the page was temporarily set to False to capture the figure.)

FIGURE 13-21

Figure 9-21 Enable tracing to get a wealth of information about the
page.

Reading 9 ASP.NET and Web Services 289

Web Services: The New Marketplace
As we all know, the Internet represents both value and reach for businesses of
all sizes by providing opportunities to find new customers, streamline supply
chains, provide new services, and secure financial gain. A major impediment
has held back the enormous potential of the Internet marketplace to open up trade
worldwide. This roadblock is not only in the way of those already conducting
business-to-business (B2B) e-commerce but also in the way of businesses that
are not yet players in the digital economy. This roadblock is one of design.
Most Internet services currently in place take divergent paths to connect buyers,
suppliers, marketplaces, and service providers, which means that without large
investments in their technology infrastructure, a furniture manufacturer in North
Carolina might have a difficult time working with a specialized fittings supplier
in Borneo. Also, the furniture manufacturer can only work with global trading
partners it knows about, so there has to be a mechanism for the supplier to
make its presence widely known. E-commerce participants have not yet agreed
on one standard or backbone on which to communicate their services, which
makes finding and working with potential trading partners severely limited.
This situation, however, is rapidly changing.

What Are Web Services?
In very general terms, ASP.NET pages are for human interaction with a Web
server, and Web services are for programmatic interaction with a Web server.
Web services are a general model for building applications that can be imple-
mented for any operation that supports communication over the Internet. Web
services combine both component-based development models and the Web. Of
course, component-based object models such as Distributed Component Object
Model (DCOM), Remote Method Invocation (RMI), and Internet Inter-Orb Pro-
tocol (IIOP) have been around for some time. The down side of these models
is that they depend on a protocol that’s particular to the object model. Web ser-
vices, on the other hand, extend these models a bit further to communicate
using SOAP and XML, which essentially eradicates the object model–specific
protocol barrier. The nature of a Web service is shown in Figure 9-22.

290 Destination Visual Basic .NET

FIGURE 13-22

Figure 9-22 High-level view of the Web service model.

As you can see in the illustration, SOAP calls are remote function calls that
invoke code-method executions on Web services components. The output from
these methods is rendered as XML and passed back to the user. This magic can
be accomplished because Web services basically use text-based HTTP and
SOAP to make business data available on the Web. A Web service exposes busi-
ness objects (such as COM objects, Java Beans, and so on) to SOAP calls over
HTTP and then executes remote function calls on their receipt. Consumers of
Web services can easily invoke method calls on remote objects using SOAP and
HTTP and have their data returned via text-based XML. This is an elegant and
compelling scenario.

OK, Now How Do We Communicate?
Let’s say that the North Carolina–based furniture manufacturer wants to com-
municate with the Borneo-based fittings supplier. How does the furniture man-
ufacturer become aware of the semantics required to actually use the fittings
supplier’s Web service?

This question is easily answered—by conforming to a common standard.
A few of these standards are the Service Description Language (SDL), SOAP
Contract Language (SCL), and Network Accessible Service Specification Lan-
guage (NASSL), which are XML-like languages built to facilitate communication
between a client and a server. IBM and Microsoft, however, recently agreed on
the Web Services Description Language (WSDL) as a Web service standard.
Therefore, in order to dynamically communicate, each Web service exposes the
structure of its components using WSDL.

WSDL is a general-purpose XML language for describing the interface,
protocol bindings, and deployment details of network services. WSDL defines
XML grammar for describing network services as collections of communication
endpoints capable of exchanging messages. WSDL service definitions provide
documentation for distributed systems and automate the details involved in
communications between applications. Like XML, WSDL is extensible to allow

���� .�
����0���

 �������

5(- 5(-

�'�&��0��
6++&

�'�&��0��
6++&

Reading 9 ASP.NET and Web Services 291

the description of endpoints and their messages, regardless of what message
formats or network protocols are used to communicate. WSDL can be used to
design specifications to invoke and operate Web services on the Internet and to
access and invoke remote applications and databases.

Visual Basic .NET makes it easy to create Web services with components
that communicate using HTTP GET, HTTP POST, and SOAP. Consumers of a
Web service don’t need to know anything about the platform, object model, or
programming language used to implement the service. Consumers only need to
understand how to send and receive SOAP messages (HTTP and XML).

The decentralized nature of Web services enables both the client and the
Web service to function as autonomous units. This provides limitless ways to
consume a Web service—for example, a call to a Web service that might be
included in your Web application, or from a middleware component, or even
from another Web service, as in our furniture supplier example.

Finding Out Who Is Offering What in the Global Marketplace
To address the problems of finding what Web services are out there and how to
communicate with them, a group of technology and business leaders have
come together to develop the Universal Discovery, Description, and Integration
(UDDI) specification. The UDDI service is an industry-wide effort to bring a
common standard to B2B integration. It defines a set of standard interfaces for
accessing a database of Web services. This initiative creates a platform-indepen-
dent, open framework to enable businesses to accomplish several goals at
once. The UDDI data structure provides a framework for the description of
basic business and service information and also architects an extensible mech-
anism to provide detailed service access information:

■ Businesses can discover each other.

■ The definition of how businesses interact over the Internet is
defined.

■ Businesses can easily share information in a global registry.

UDDI is the name of a group of Web-based registries that expose informa-
tion about a business or other entity and its technical interfaces (APIs). This
way, UDDI provides a way for businesses to publish information about their
own services as well as find services they need from other businesses.

The UDDI specifications take advantage of World Wide Web Consortium
(W3C) and Internet Engineering Task Force (IETF) standards such as XML,
HTTP, and Domain Name System (DNS) protocols. Also, cross-platform pro-
gramming features are addressed by adopting early versions of the SOAP

292 Destination Visual Basic .NET

messaging specifications found at the W3C Web site. There are three steps in
how the UDDI works:

1. Software companies, standards bodies, and programmers populate
the registry with descriptions of different types of services they
support.

2. The UDDI Business Registry assigns a programmatically unique iden-
tifier to each service and business registration.

3. Marketplaces, search engines, and business applications query the
registry to discover services at other companies.

Conceptually, the information provided in a UDDI business registration
consists of three components. There are the “white pages,” which include the
business address, contact, and known identifiers. Next are the “yellow pages,”
which include industrial categorizations. And finally there are the “green
pages,” which contain technical information about services that are exposed by
the business.

As you might guess, it’s the green pages that allow us to automatically dis-
cover how to use the service because they include references to specifications
for the Web services as well as support for pointers to various file and URL-
based discovery mechanisms, if required.

Once a Web service is found, there must be a mechanism to determine
exactly what methods (essentially that service’s API) it exposes. For example, a
client needs to know that the service has a method named getProductDescrip-
tion that takes a long and returns a string. The client can accomplish this task
using the WSDL, which is conceptually similar to a COM type library. Using
WSDL, a C++ or Java client can understand the parameters of the getProduct-
Description API and build the correct SOAP message to invoke the service.
Essentially, WSDL is a specification for using XML schemas to fully describe the
service’s API.

The third Web service standard is the use of XML schema definition lan-
guage (XSD). XSD defines a pretty large set of data types that should cover
most applications’ needs. The standard data types ensure that the data passed
between service and client, such as integers and dates, are interpreted and laid
out in memory the same way on each side. However, if absolutely necessary,
XSD permits you to define your own data types when required. Since XSD is
used, both the client and the service can agree on what is a string, a long, and
so on.

The vocabulary surrounding Web services is that a Web service provides
services by exposing its API while a client consumes those services, as shown in

Reading 9 ASP.NET and Web Services 293

Figure 9-23. So a client first finds out about a service from UDDI, then uses
WSDL to determine how to communicate with the service, and then contacts
the service.

FIGURE 13-23

Figure 9-23 How a client discovers and communicates with a Web ser-
vice.

Where Are Web Services Going?
Web services are quickly becoming the programmatic backbone for electronic
commerce. The future looks bright for Web service technology developed with
Visual Basic .NET. However, Microsoft is not alone in the race for Web services
technology. Both Sun and IBM are also very interested. In addition, SOAP tool-
kits are available for Apache and Java Web servers. Although the discovery pro-
cess is still in the embryonic stages, Web services have the potential to
introduce new concepts to the Internet. For example, it would be easy to con-
struct Web sites that generate revenue for each request serviced to a user. This
micro-billing would charge by use, not by a flat monthly fee. It’s easy to see
how searches on sites for periodical publications might charge $1.50 to view
any article over 5 years old.

I’m sure you’re aware of federations of Web services—situations in which
one Web service might call on another Web service to provide value. For exam-
ple, if my Web service sends foreign denominated wire transfers, behind the
scenes I might call on one Web service to validate the user and another to

���0���	��"����0���7
"����������7�	��

 �����	�������"" �

.�
����0�����"����������
-	���	����.�"-�

.�
����0���)���	��2	�����4$+�������

��	���
�""
����.�

���0����

� #�����0������.�

���0���������������

�

 �0�!�����
.�
����0���

�

�'�&�����	���8��	��	������������������5�"��	�	������

294 Destination Visual Basic .NET

provide the real-time currency exchange rates. By using others’ services, my
service can concentrate on formatting the instructions correctly and efficiently
to send the wire instruction to the Federal Reserve or S.W.I.F.T. When looked at
in this light, Web services can be described as the “plug and play” building
blocks of B2B Web solutions.

Building a Web Service
With all the daily decisions Visual Basic .NET programmers have to make,
wouldn’t it be helpful if there were an oracle of sorts we could turn to for sage
development advice? If there were a Web service we could query for answers to
our thorny problems, life would be so much simpler. So, let’s create such a Web
service for the betterment of all.

Start a new project and select ASP.NET Web Service. Name the project
MagicEightBall. The New Project dialog box for our Web service is shown in
Figure 9-24.

FIGURE 13-24

Figure 9-24 Create an ASP.NET Web Service project named
MagicEightBall.

You’ l l be presented wi th a b lank des igner screen wi th the
Service1.asmx.vb tab. Right-click the designer, and select Properties. Change
the name from Service1 to Magic8Ball. This change will also change the name
of the class in the code-behind from Service1 to Magic8Ball.

Reading 9 ASP.NET and Web Services 295

Bring up the Solution Explorer, and then right-click the Service1.asmx file.
Rename the file Magic8.asmx. Right-click the designer again, and then select
View Code to bring up the code window. Next change the URL to http://
www.solidstatesoftware.com/webservices/ in the code before the class declara-
tion. This statement provides a unique namespace for our Web service. The
code should look like this:

<System.Web.Services.WebService(Namespace:= _
“http://www.solidstatesoftware.com/webservices/”)>

Public Class Magic8Ball
Inherits System.Web.Services.WebService

Add the following code to the template:

Private possibleFutures() As String = _
{"The answer is unclear", _
“Uncertain at this time", _
“I have no idea", _
“Absolutely yes!", _
“Ask again later", _
“Emphatically No!", _
“Buy Microsoft short"}

<WebMethod(Description:="Provides an answer”)> _
Public Function getFuture() As String

Dim rndRandom As System.Random = New System.Random()
Dim iLower = possibleFutures.GetLowerBound(0)
Dim iUpper = possibleFutures.GetUpperBound(0)

Return possibleFutures(rndRandom.Next(iLower, iUpper))

End Function

<WebMethod(Description:="Ask me a question”)> _
Public Function getAnswer(ByVal Question As String) As String

Dim rndRandom As System.Random = New System.Random()
Dim iLower = possibleFutures.GetLowerBound(0)
Dim iUpper = possibleFutures.GetUpperBound(0)
Dim sAnswer As String

sAnswer = Question & “? “ & _
possibleFutures(rndRandom.Next(iLower, iUpper))

Return sAnswer
End Function

The first member is a class-level array of strings, named possibleFutures.
This array is private so that it can’t be seen from outside the Web service. Next

296 Destination Visual Basic .NET

are two Web methods, getFuture and getAnswer. By prefacing each with the
<WebMethod()> directive, we expose both of these methods to the outside world.
The templates for the Web methods will show WebMethod(). By adding the
description, users querying your Web service can see a useful message showing
what each method is used for. Also notice that we used Question as the parame-
ter for the getAnswer method instead of sQuestion. We used this name because
Question will show up when our service is queried, making it crystal clear what
the purpose of the method is. We keep our Web service simple, but just simple
enough to provide sage advice to anyone who cares to query for it.

The first Web method, getFuture, returns an answer. The second, getAn-
swer, takes a specific question from the user and appends the answer. As you
can see, we generate a random number between 0 and the number of entries in
the possibleFutures array. A random response will be returned to the client
using our service. If you want any helper functions, simply make them private
so that they can’t be seen by the outside world. We won’t spend any more time
on these methods because they should be very familiar by now.

Run the Program
Web services have no visual interface; they simply expose methods. Without
writing any additional code, the screen shot shown in Figure 9-25 is displayed,
showing the name of the Web service and the two services it currently offers.

FIGURE 13-25

Figure 9-25 The MagicEightBall application in action.

Reading 9 ASP.NET and Web Services 297

Click on getFuture to see information about the method along with a but-
ton you can click to invoke the method, shown in Figure 9-26. In addition, a
sample SOAP request and response are provided.

FIGURE 13-26

Figure 9-26 Information about the getFuture method.

Click the Invoke button. A new browser window is displayed with the
XML formatted response from the Magic8Ball Web service. We can see that an
example answer is “Uncertain at this time.” This text is what would be
returned to a program on the Internet that invoked the getFuture method of
our Web service.

<?xml version="1.0” encoding="utf-8” ?>
<string xmlns="http://www.solidstatesoftware.com/webservices/">
Uncertain at this time</string>

Close the second browser window, click the back button on the first
browser, and click getAnswer. This method requires a string to be entered, so
the name of the parameter, Question, is displayed as a prompt with a text
box to enter our query. Now you can see why we used Question instead of
the traditional sQuestion we would normally use when humans do not see
parameters. Even though most programmers are human, they don’t count in
this context. Enter a question in the text box, and click Invoke, as shown in
Figure 9-27.

298 Destination Visual Basic .NET

FIGURE 13-27

Figure 9-27 Type in a question before you invoke the getAnswer
method.

Another browser window is opened, and our answer is provided in XML.
The service works as advertised. The question is displayed along with the
answer.

<?xml version="1.0” encoding="utf-8” ?>
<string xmlns="http://www.solidstatesoftware.com/webservices/">
Will Web services be the next big thing? Uncertain
at this time</string>

Now close the second browser window, click the back button in the first
browser window, and click Service Description. A small portion of the WSDL
for our Web service is shown in Figure 9-28.

Reading 9 ASP.NET and Web Services 299

FIGURE 13-28

Figure 9-28 A small portion of the WSDL for our Web service.

This WSDL file will be used to build a proxy class in a client that consumes our
Web service.

Consuming the MagicEightBall Web Service
Start a new Windows application project named ConsumeEightBall. To keep
things simple while illustrating each of the important concepts in this topic, our
client will exercise both exposed Web methods of the MagicEightBall Web ser-
vice. One button will retrieve an answer, and a second button will accept a
question in the text box and return the question and answer. Our client is
shown in Figure 9-29.

300 Destination Visual Basic .NET

FIGURE 13-29

Figure 9-29 The ConsumeEightBall application in action.

One of the key questions you might have is, “Does a client actually exe-
cute methods on the Web service’s Web server?” As you can imagine, doing that
would be a serious security threat. Web masters don’t want anyone to use their
Web resources in a way that could do malicious damage to sensitive data, not
to mention chewing up bandwidth. We also have to keep in mind that Web ser-
vices are distributed applications. With distributed applications, we have to be
concerned about the marshaling of data.

To get around these problems, we actually replicate the object behavior
locally on the user’s machine. In our example, we will replicate the MagicEight-
Ball Web service functionality on the client’s program. It sounds strange, but
stay tuned. We do this replication by creating a proxy object to act on behalf of
the original Web service. The proxy object has all the publicly available data
interfaces that the original Web service does.

How do we get the publicly available data interface? Recall that we used
the <WebMethod()> directive in our MagicEightBall service. Only Web methods
will be replicated at the proxy object. This limitation protects our service from
exposing sensitive business logic to malicious hackers at the client end. So we
program to the proxy object in our program, and it takes care of sending the
SOAP messages to and from the real Web service, as shown in Figure 9-30.

Reading 9 ASP.NET and Web Services 301

FIGURE 13-30

Figure 9-30 The proxy object takes care of sending the SOAP mes-
sages to and from the real Web service.

Building Our Web Services Client Program
Add two labels, two buttons, and a text box to the ConsumeEightBall default
form, as shown in Figure 9-31.

FIGURE 13-31

Figure 9-31 Add these controls to the form.

.�
�
������

.�
����0���

5(- 5(-

�'�&��0��
6++&

�'�&��0��
6++&

����
��9����

5(-

6++&�:$+���
&'�+��	��

&��%�
�
����

���������

����	����
����
�����	�

 �������

302 Destination Visual Basic .NET

Set the properties for each of the controls and the form as shown in
Table 9-5.

Adding a Proxy Class to Our Program
To access the MagicEightBall Web service, we have to add a proxy class. You
can add a proxy through the command line with a program called Wsdl.exe,
but this approach is pretty difficult. I won’t cover it, but if you are interested,
you can check out the online help. Instead, we will do it the easy way.

Choose Add Web Reference from the Project menu to bring up the Add
Web Reference dialog box. Click Web References On Local Web Server to dis-
play all the .vsdisco files in the InetPub\wwwroot directories. Click the .vsdisco
file for our MagicEightBall service, as shown in Figure 9-32.

Click View Contract at the right side of the Add Web Reference dialog box
to examine the XML formatted .vsdisco discovery file. Click the Add Reference
button to add this file to the project. Now take a look at the Solution Explorer.
Notice in Figure 9-33 that the Web References folder contains the WSDL file of
our Web service. This file is what’s used to create the proxy that our program
will use.

Table 9-5 Properties for the ConsumeEightBall Controls

Object Property Value

Form1 Text Magic 8 Ball Client

Label Name lblRetrieveAnswer

BorderStyle Fixed3D

Text ""

Button Name btnRetrieve

Text &Retrieve an Answer

Text box Name txtQuestion

Text ""

Label Name lblQuestion

Text ""

Button Name btnAskQuestion

Text &Ask a Question

Reading 9 ASP.NET and Web Services 303

FIGURE 13-32

Figure 9-32 Click the .vsdisco file for our MagicEightBall service.

FIGURE 13-33

Figure 9-33 The Web References folder contains the WSDL file of our
Web service.

Adding Code to Get Our Magic Eight Ball Answers
First right-click the form and choose View Code. Next add the Imports state-
ment that will reference the local host folder in our Solution Explorer. This
statement gives us the reference to the proxy class that was automatically built
for us.

Imports ConsumeEightBall.localhost

304 Destination Visual Basic .NET

Now add the code for the two buttons.

Private Sub btnRetrieve_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnRetrieve.Click

Dim Magic8 As New localhost.Magic8Ball()
lblRetrieveAnswer.Text = Magic8.getFuture

End Sub

Private Sub btnAskQuestion_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnAskQuestion.Click

Dim Magic8 As New localhost.Magic8Ball()

If (txtQuestion.Text.Length < 2) Then
MessageBox.Show(“Please enter a question to submit.", _

“Magic 8 Ball Client", MessageBoxButtons.OK, _
MessageBoxIcon.Question)

Else
lblQuestion.Text = Magic8.getAnswer(txtQuestion.Text)

End If
End Sub

As you can see, all we have to do is create a reference to the Magic8Ball
proxy that we just added. In both procedures, we created a local variable,
Magic8, that is a new instance of the Magic8Ball proxy class. When the first
button is clicked, we simply display the answer from the getFuture Web
method, and when the second button is clicked, we pass in a question from the
text box to the getAnswer Web method. As you can see, we simply have to get
a reference to the proxy class Magic8Ball, as we would from any other class we
might use from the .NET Framework or build ourselves. Then we can reference
it. What could be easier?

Conclusion

To me, Web services are the most exciting offering of the entire .NET experi-
ence. In this reading alone, you’ve learned how to build sophisticated, multi-
page, data-validated ASP.NET pages. You also learned how to both build and
then consume Web services. That shows how easy these powerful technologies
have become with Visual Basic .NET.

305

Index
Symbols
& (ampersand), as accelerator key, 140

A
abstract classes

CollectionBase class, 105–7
DictionaryBase class, 107–8
ReadOnlyCollectionBase class, 103–4

accelerator key, ampersand (&) as, 140
AcceptChanges method, 236
AcceptChangesDuringFill property, 241
access keys, 128–29
accessibility-related properties, 118–19
AccessibleDefaultActionDescription property, 119
AccessibleDescription property, 118
AccessibleName property, 118
AccessibleRole property, 118
action queries, 233
ActivateControls method, 121
Active Server Pages. See ASP
ActiveX

vs. .NET Framework, 21–22, 23
and Visual Basic .NET Toolbox, 33–34

Adapter method, 95
Add method

ArrayList object, 93
IDictionary interface, 88
IList interface, 87
SortedList object, 101

AddHandle keyword, 38
AddRange method, 94
ADO (ActiveX Data Objects)

vs. ADO.NET, 195–96, 197
vs. DAO, 27–29

ADO.NET
asynchronous operations, 205–6
vs. classic ADO, 195–96, 197
connection pooling, 207–9
data independence feature, 197–98
DataSet object, 234–39
error handling, 204–5
overview, 195–96
transactions, 209–13

AllowDBNull property, 238

AllowDrop property, 119
ampersand (&), as accelerator key, 140
Anchor property, 117
And method, 89
AndAlso keyword, 38
Ansi keyword, 38
apartment threading, 30–31
App object, 23
appearance-related events, 124–25
appearance-related methods, 121–22
arithmetic operators, 11–12
Array object. See also arrays

Clear method, 81
Copy method, 81–83
CreateInstance method, 77, 79
GetLength method, 76
GetLowerBound method, 76, 77
GetUpperBound method, 76
IndexOf method, 83–85
LastIndexOf method, 84–85
Length property, 76
overview, 75–77
Rank property, 76
Reverse method, 80–81
Sort method, 79–81
syntax, 75

ArrayList object
Adapter method, 95
Add method, 93
AddRange method, 94
BinarySearch method, 95
Capacity property, 92
Clear method, 93
CopyTo method, 94
Count property, 92, 93
IndexOf method, 95
InsertRange method, 94
LastIndexOf method, 95
overview, 92–95
Remove method, 93
RemoveRange method, 94
Repeat method, 92
Reverse method, 95

306

ArrayList object
Sort method, 95
SortRange method, 95
ToArray method, 94

arrays
arrays of, 85–86
clearing elements, 81
copying, 78–79
copying elements, 81–83
creating, 75–78
lower dimension, 41–42
nonzero-based, 77–78
searching values, 83–85
sorting elements, 79–81
zero-based lower bound, 41–42

ASP, 253–54
ASP.NET

as basis for Web Forms, 262
creating Web Forms, 256–70
features, 254–55
list of Web Form project files, 259
Web Form structure, 262–63
vs. Web services, 289

ASP.NET Web Service, 294–96
.aspx file extension, 255
AssemblyInfo.vb file, 259
asynchronous operations, ADO.NET, 205–6
attributes, in Visual Basic .NET, 12
Auto keyword, 38
AutoIncrement property, 238
AutoIncrementSeed property, 239
AutoIncrementStep property, 239

B
BackColor property, 118
background compilation, 17, 19
base classes, 144, 146, 149, 159–74
Begin method, 211–12
BeginTrans method, 209
BeginTransaction method, 200, 209–10, 212
Biblio.mdb database, 202
BinarySearch method, 95
BitArray object

And method, 89
CopyTo method, 89
Count property, 89
Get method, 89

Length property, 89
Not method, 89
Or method, 89
overview, 88–90
Set method, 89
SetAll method, 89
Xor method, 89

Bottom property, 117
Bounds property, 117
BringToFront method, 120
build errors, 63
button controls, 115, 260, 267, 274, 302
Byte data type, 14

C
C# language, 17–19, 255
Cache object, 279
Calendar Auto Format dialog box, 265–66
calendar control

overview, 264
calendar control, Web Forms

adding code, 266–67
adding to designer, 260
setting properties, 265
viewing HTML code in Internet Explorer,

268–70
Call keyword, 39
call stack, 61–63
CallWndProc method, 122
Cancel method, 214
CanFocus property, 119
CanSelect property, 119
Capacity property, 92, 100
Capture property, 119
CaseSensitive property, 236
Catch keyword, 39, 57. See also

Try...Catch...Finally construct
CausesValidation property, 118
CChar keyword, 38
central exception handlers, 64–70
ChangeDatabase method, 200
ChangeUICues event, 123
Chaos isolation level, 210
CheckBox control, 115
CheckedListBox control, 115
child controls, methods common to, 121
ChildRelations property, 234

arrays

307

circular buffers, 91–92
Class keyword, 38
class library, 23, 45, 46–49
classes

abstract, 103–8
creating, 103
methods and properties, 144
nested, 178–81
vs. objects, 138–39
sealed, 174–77
vs. structures, 50–52
virtual, 174–77

Clear method
Array object, 81
ArrayList object, 93
DataSet object, 237
IDictionary interface, 88
IList interface, 87
SortedList object, 101

Click event, 123, 129
ClientRectangle property, 117
ClientSize property, 117
Clipboard object, 23
Clone method, 101, 236
Close method, 27, 200, 227
CloseConnection value, 217
CObj keyword, 38
code-behind files

adding code, 275–76
for loan payment calculator, 275–76
overview, 262, 263
viewing, 264–65

Collect method, 27
collection classes, 103
Collection object, 23
CollectionBase class, 105–7
ColorDialog control, 116
color-related properties, 118
ComboBox control, 115
Command object

creating, 215–16
list of methods, 214
list of properties, 213–14
overview, 213
Parameters collection, 220–21, 224–25

CommandTimeout property, 214
CommandText property, 213, 215

CommandType property, 213, 221–22
Commit method, 210
CommitTrans method, 209
common language runtime (CLR), 23
CommonDialog control, 116
CompanyName property, 119
compiler, background, 17, 19
component model–related namespaces, 147
Component Services, 207
configuration-related namespaces, 147
Connection object

list of events, 200
list of methods, 200
list of properties, 199–200
overview, 199
type identity and, 27

connection pooling, 207–9
Connection property, 213, 215
ConnectionString property, 199, 200–202
ConnectionTimeout property, 199, 201
constructors

in derived classes, 163–65
scope qualifiers and, 186–89

ConsumeEightBall project, 299–301
container controls, events common to, 125
ContainerControl class, 114
Contains method

IDictionary interface, 88
IList interface, 87
Queue object, 92
SortedList object, 101
Stack object, 90
Windows Forms control, 121

ContainsFocus method, 122
ContainsKey method, 101
ContainsValues method, 101
context menus, 129–30
ContextMenu control, 115
ContextMenu property, 119
Control class, 113–14
ControlAdded event, 125
ControlRemoved event, 125
controls, Web Forms, 259, 260, 265–66
controls, Windows Forms

accessibility-related properties, 118–19
appearance-related events, 124–25
appearance-related methods, 121–22

controls, Windows Forms

308

controls, Windows Forms
color and graphics–related properties, 118
creation-related properties, 119
design only, 119
drag and drop–related events, 124
events for container controls, 125
extender provider, 116
focus-related events, 123
focus-related methods, 122
on forms, 112
keyboard and mouse–related events, 123–24
keyboard and mouse–related properties, 118
list of events common to most, 123–25
list of methods common to most, 120–22
list of properties common to most, 116–19
locking, 113
methods for child controls, 121
resizing several at once, 113
run time only, 119
setting properties, 112
size and position–related methods, 120
size and position–related properties, 117
TaxIndex property, 112–13
text-related properties, 117–18
in Visual Studio .NET Toolbox, 115–16
ways to add to forms, 139
windowless, 116
Windows Forms.dll library, 115–16

Copy method, 81–83, 236
copying arrays, 78–79
CopyTo method

ArrayList object, 94
BitArray object, 89
IDictionary interface, 88
IList interface, 87
SortedList object, 101

Count property
ArrayList object, 92, 93
BitArray object, 89
IDictionary interface, 88
IList interface, 87
SortedList object, 100
Stack object, 90

CreateCommand method, 200
CreateControl method, 122
Created property, 119
CreateGraphics method, 122
CreateInstance method, 77, 79

CreateParameter method, 214
CrystalReportViewer control, 116
CShort keyword, 38
CType keyword, 38
Currency data type, 8–9, 14
Cursor property, 118

D
DAO (Data Access Objects), 27–29
Data Adapter Configuration Wizard, 243–46
Data controls, 116
data grid, 287. See also DataGrid control
data providers, 196. See also OLE DB .NET data

provider; SQL Server .NET data provider
data types

automatic coercions, 18–19
defining for DataColumns, 238–39
mapping between Visual Basic and Visual Basic

.NET, 14
in .NET Framework, 147
in Visual Basic .NET, 14

DataAdapter object
AcceptChangesDuringFill property, 241
adding to programs, 243–46
DeleteCommand property, 241
Fill method, 241
FillError event, 241
FillSchema method, 241
GetFillParameters method, 241
InsertCommand property, 241
list of events, 241
list of methods, 241
list of properties, 241
MissingMappingAction property, 241
overview, 239–41
RowUpdated event, 241
RowUpdating event, 241
SelectCommand property, 241, 242
TableMappings property, 241
Update method, 241
UpdateCommand property, 241
viewing data, 248–50

Database property, 199
databases

issuing commands, 216
multiple queries, 232–33
opening asynchronously, 205–6
reading data from, 242

Copy method

309

DataGrid control, 116, 247, 282
DataReader object

closing, 224
iterating over individual rows, 226
list of methods, 227–28
list of properties, 226
reading column values, 228–31
reading data, 216, 217

data-related namespaces, 147
DataRelation object, 234
DataSet object

AcceptChanges method, 236
CaseSensitive property, 236
Clear method, 237
Clone method, 236
Copy method, 236
DataSetName property, 236
DefaultViewManager property, 236
EnforceConstraints property, 236
ExtendedProperties property, 236
GetChanges method, 237
GetXml method, 237
HasChanges method, 236
HasErrors property, 236
InferXmlSchema method, 237
list of events, 237
list of methods, 236–37
list of properties, 236
in loan calculator routine, 285
Locale property, 236
Merge method, 236
MergeFailed event, 237
Namespace property, 236
object model, 234–39
overview, 234
Prefix property, 236
ReadXml method, 237
ReadXmlSchema method, 237
RejectChanges method, 236
Relations property, 236
Reset method, 236
storing objects, 239
Tables property, 236
WriteXml method, 237

DataSetName property, 236
DataSource property, 199, 287
DataTable object

ChildRelations property, 234

creating, 237–39
defining relationships between, 234
ParentRelations property, 234
PrimaryKey property, 239

DataView object, 287
DateTimePicker control, 115
debugger, 44–45
Decimal data type, 14, 231
Default keyword, 38
DefaultViewManager property, 236
Delegate keyword, 38
DELETE statement, 216
DeleteCommand property, 241
Dequeue method, 91
derived classes

constructors in, 163–65
finalizers in, 165–66
inheritance and, 144, 154–59
member shadowing, 169–73

DeriveParameters method, 225
determinism, 25–26
dictionary classes, 103
DictionaryBase class, 107–8
DirectCast keyword, 38
Direction property, 222, 225
DirListBox control, 116
Dispose method, 26, 27, 122, 165
Disposed property, 119
Disposing property, 119
Dock property, 117
DoDragDrop method, 122
Domain Name System (DNS), 291
DomainUpDown control, 116
Double data type, 14
DoubleClick event, 123
drag and drop–related events, 124
DragDrop event, 124
DragEnter event, 124
DragLeave event, 124
DragOver event, 124
DriveList control, 116
drop-down list controls, 274, 279–80

E
e-commerce, 289
Enabled property, 118, 130
encapsulation, 150
EnforceConstraints property, 236

EnforceConstraints property

310

Enqueue method, 91
Enter event, 123
error messages, logging, 67–70
ErrorProvider control, 116
errors. See programming errors
Errors collection, 204–5
event handling, 40–41
events

appearance-related, 124–25
Connection object, 200
for container controls, 125
DataAdapter object, 241
DataSet object, 237
drag and drop–related, 124
focus-related, 123
inheriting, 157
keyboard-related, 123–24
list common to most controls, 123–25
mouse-related, 123–24
Windows Forms menu, 129

Exception class, 54
exception handling

central handlers, 64–70
directives, 70–73
goals of using, 70
logging exceptions, 67–70
overview, 53–54
Try...Catch...Finally construct, 55–63
types of handlers, 55–56
in Visual Basic .NET, 11

exception logs, 67–70
EXEC statement, 224
ExecuteNonQuery method, 214, 216, 221
ExecuteReader method, 214, 216, 217–18, 221
ExecuteScalar method, 214, 216, 218–19
ExecuteXmlReader method, 216, 219
ExtendedProperties property, 236
extender provider controls, 116

F
FieldCount property, 226
File object, 25, 26
FileListBox control, 116
Fill method, 241
FillError event, 241
FillSchema method, 241
Finalize method, 165
finalizers, in derived classes, 165–66

Finally keyword, 39, 57. See also
Try...Catch...Finally construct

FindForm method, 120
fixed-length strings, 42
Focus method, 122
Focused property, 119
focus-related events, 123
focus-related methods, 122
focus-related properties, 118
Font property, 117
FontDialog control, 116
FOR XML queries, 216, 219
ForeColor property, 118
Form class. See also forms

vs. Control class, 114
features, 112
in Windows Forms class hierarchy, 114, 146

form designer, Visual Studio .NET
code generation, 110–12
Form1 example, 110–12
new features, 112–13
overview, 110

forms. See also Web Forms; Windows Forms
as examples of objects, 139–44
modal vs. modeless, 145
packages, 36, 37
resizing, 143

For...Next blocks, 43
Frame control, 115
Framework services–related namespaces, 147
Friend scope qualifier, 178, 182
function overloading, in Visual Basic .NET, 12

G
GarbageCollector class, 18, 24, 25, 27
GDI+, 15
Get method, 89
GetBoolean method, 227
GetByIndex method, 101
GetByte method, 227
GetBytes method, 227
GetChanges method, 237
GetChar method, 227
GetChars method, 227
GetChildAtPoint method, 121
GetContainer method, 120
GetContainerControl method, 120
GetDataTypeName method, 228

Enqueue method

311

GetDateTime method, 227
GetDecimal method, 227
GetDouble method, 227
GetFieldType method, 227
GetFillParameters method, 241
GetFloat method, 227
GetGuid method, 227
GetHashCode method, 96
GetInt16 method, 227, 228
GetInt32 method, 227, 228
GetInt64 method, 227, 228
GetKey method, 101
GetKeyList method, 101
GetLength method, 76
GetLowerBound method, 76, 77
GetName method, 227, 229
GetNextControl method, 122
GetOleDbSchemaTable method, 200
GetOrdinal method, 227
GetSchemaTable method, 228
GetSqlBinary method, 228
GetSqlBoolean method, 228
GetSqlByte method, 228
GetSqlDataTime method, 228
GetSqlDecimal method, 228
GetSqlDouble method, 228
GetSqlGuid method, 228
GetSqlSingle method, 228
GetSqlString method, 228
GetSqlValue method, 228
GetSqlValues method, 228
GetString method, 227
GetTimeSpan method, 227, 231
GetType function, 238, 239
GetType keyword, 38
GetUpperBound method, 76
GetValue method, 227, 229
GetValueList method, 101
GetValues method, 227, 229
GetXml method, 237
GiveFeedback event, 124
Global.asax file, 259
globalization-related namespaces, 147
globally unique identifiers (GUIDs), 30
GotFocus event, 123
graphics-related properties, 118
GroupBox control, 115
GUIDs (globally unique identifiers), 30

H
Handle property, 119
HandleCreated event, 125
HandleDestroyed event, 125
Handles keyword, 38, 40–41
HasChanges method, 236
HasErrors property, 236
hash tables, 96–98
Hashtable class, 95–98
Height property, 117, 142–43
HelpProvider control, 116
HelpRequested event, 124
Hide method, 121
HScrollBar control, 115
HTML code, viewing in Internet Explorer, 268–70
HTML server controls, 260
HTTP GET, 291
HTTP POST, 291
hyperlink controls, 274, 280–81

I
ICloneable interface, 78, 89
ICollection interface, 86–88
IComparable interface, 99
IComparer interface, 97, 98
IDE (integrated development environment), 141,

148–49
IDictionary interface, 86–88, 95
IDisposable interface, 26, 165
IEnumerable interface, 88, 90, 98
If...Then blocks, 43
IList interface, 86–88, 93
Image control, 116
ImageList control, 115
IMEMode property, 118
importing namespaces, 29
Imports keyword, 38, 275–76, 282, 303–4
IndexOf method, 83–85, 87, 95
IndexOfKey method, 101
IndexOfValue method, 101
InferXmlSchema method, 237
InfoMessage event, 200
inheritance

defined, 151
by delegation, 152
early-bound polymorphic code and, 153
interface-type, 11, 153
late-bound polymorphic code and, 152–53

inheritance

312

inheritance
overview, 144
in previous Visual Basic versions, 151–53
in Visual Basic .NET, 10–11, 154–59

Inherits keyword, 38
Inner classes, 179, 180
Insert method, 87
InsertCommand property, 241
InsertRange method, 94
Integer data type, 14
IntelliSense, 18, 141
interface inheritance, 11, 153
Interface keyword, 38
Internet Engineering Task Force (IETF), 391
Internet Explorer, viewing HTML code, 268–70
Invalidate method, 121
Invalidated event, 125
IsAccessible property, 119
IsClosed property, 226
IsDBNull function, 230
IsDBNull method, 227, 229, 230
IsFixedSize property, 87, 88
IsolationLevel property, 210–11
IsPostBack property, 277
IsReadOnly property, 87, 88
Item property

DataReader object, 226, 228, 229
IDictionary interface, 88
IList interface, 87
SortedList object, 100

K
keyboard-related events, 123–24
keyboard-related properties, 118
KeyDown event, 124
KeyInfo value, 217
KeyPress event, 124
Keys property

Hashtable object, 98
IDictionary interface, 88
SortedList object, 101

KeyUp event, 124

L
Label control, 115, 273, 274, 282, 302
LastIndexOf method, 84–85, 95
late binding, 18

Layout event, 125
Leave event, 123
Left property, 117
Length property, 76, 89
Line control, 116
LinkLabel control, 116
ListBox control, 115
ListDictionary class, 103
ListItem Collection Editor dialog box, 274
ListView control, 115
loan payment calculator

adding code to code-behind form, 275–76
adding controls to form, 273
adding payment schedule page, 280–82
building, 273–75
finished, 271, 272
how it works, 285–88
list of control properties, 273–74
overview, 270–72
starting project, 273

Locale property, 236
Location property, 117
Locked property, 119
locking controls, 113
logging exceptions, 67–70
Long data type, 14
LostFocus event, 123

M
MagicEightBall project, 294–99
MainMenu control, 115, 126–27
MaxLength property, 238
members. See also methods; properties

defined, 144
inheriting, 157–58
overriding in base classes, 159–74
scope qualifiers, 178, 181–86
shadowing, 169–73

memory management, in .NET Framework, 24–27
Menu Editor, Visual Studio .NET, 32–33
menus

adding items at run time, 133
assigning access keys, 128–29
assigning shortcut keys, 129
cloning, 132
context-type, 129–30
creating at design time, 126–30
creating item event handlers, 129

Inherits keyword

313

disabling commands, 130
displaying check marks, 131
displaying radio buttons, 131
enabling commands, 130
MainMenu control, 115, 126–27
making items invisible, 131
merging at run time, 132–33
modifying at run time, 130–33
overview, 126
separating items, 128

Merge method, 236
MergeFailed event, 237
message boxes, 142, 145
Message property, 54
MessageBox class, 142
methods

appearance-related, 121–22
for child controls, 121
Command object, 214
Connection object, 200
DataAdapter object, 241
DataReader object, 227–28
DataSet object, 236–37
defined, 140, 142
focus-related, 122
invoking, 142–44
list common to most controls, 120–22
overriding, 160, 161, 162
position-related, 120
size-related, 120
SortedList object, 100–101

Microsoft Intermediate Language (MSIL), 24
MicrosoftJetOLEDB4.0 provider, 200, 202
MinimumCapacity property, 238
MissingMappingAction property, 241
modal forms, 145
modeless forms, 145
ModifierKeys property, 118
Modifiers property, 119
Module keyword, 38
MonthCalendar control, 115
MonthView control, 115
mouse-related events, 123–24
mouse-related properties, 118
MouseButton property, 118
MouseDown event, 123
MouseEnter event, 123
MouseHover event, 123

MouseLeave event, 123
MouseMove event, 123
MousePosition property, 118
MouseUp event, 123
MouseWheel event, 123
Move event, 125
MsgBox function, 145
MsgBox method, 145
MSIL (Microsoft Intermediate Language), 24
multiple database queries, 232–33
multithreading, in Visual Basic .NET, 13, 31
MustInherit keyword, 38, 175–76
MustOverride keyword, 38, 176–78
MyBase keyword, 38, 162–63
MyClass keyword, 38, 166–69

N
Name property, 119
named transactions, 212–13
Namespace keyword, 38
Namespace property, 236
namespaces

component model–related, 147
configuration-related, 147
data-related, 147
defined, 29
displaying in Solution Explorer, 148–49
Framework services–related, 147
globalization-related, 147
importing, 29
list with descriptions, 46–49
naming syntax, 146–47
network programming–related, 147
overview, 146–48
programming-related, 147
reflection-related, 148
rich, client-side GUI–related, 148
run-time infrastructure services–related, 148
security services–related, 148
Web services–related, 148

NameValueCollection class, 103
NASSL (Network Accessible Service Specification

Language), 290
NativeError property, 205
NavigateURL property, 280–81
nested classes, 178–81
nested scopes, 43
nested transactions, 211–12

nested transactions

314

.NET CLR Data Performance object, 209

.NET data providers, 196. See also OLE DB .NET
data provider; SQL Server .NET data provider

.NET Framework
vs. ActiveX, 21–22, 23
asynchronous operations, 206
class library, 23, 45–49
memory management issues, 24–27
overview, 13
structures vs. classes, 50–52
threading model, 30–31
type identity issues, 27–30

Network Accessible Service Specification
Language (NASSL), 290

network programming–related namespaces, 147
NextResult method, 227, 232–33
nonzero-based arrays, 77–78
Not method, 89
NotifyIcon control, 116
NotInheritable keyword, 38, 174–75
NotOverridable keyword, 38, 160, 161
NumericUpDown control, 116

O
Object data type, 14
Object Sql data type, 232
object-oriented programming

classes vs. objects, 138–39
in Visual Basic .NET, 137–50

objects
vs. classes, 138–39
form example, 139–44
simple example, 139–40

ODBC .NET data provider, 196
OLE DB .NET data provider, 196, 199, 200, 202,

204, 207, 220, 225, 230
OleDbConnection object, 200, 207
OleDbDataAdapter object, 240
OleDbDataReader object, 217
OleDbException class, 204–5
OleDbTransaction object, 210, 211–12
OleDbType value, 222
On Error statements, 55
OnPageLoad event, 262
Open method, 200, 201, 203
OpenFileDialog control, 116
Option Strict keyword, 38
Or method, 89

OrElse keyword, 38
Outer classes, 178, 179, 180–81
overloaded function, in Visual Basic .NET, 12
Overloads keyword, 38, 161, 170
Overridable keyword, 38, 160, 161, 171, 173
Overrides keyword, 39, 159, 160, 161, 162, 173

P
PacketSize property, 199, 202
@Page directive, 262
Page object, 262, 263
Page organizational behavior, 277
Page_Load event handler, 262, 277
PageSetupDialog control, 116
Paint event, 124
Panel control, 115
parameterized SQL commands, 220–21
Parameters collection, 220–21, 224–25
Parameters property, 214
parent classes, 144
parentheses, when to use, 39
ParentRelations property, 234
Patent property, 117
Peek method, 90, 91
performance counters, checking connection

pooling, 209
PictureBox control, 115, 116
Pmt function, 278
pointers, 18
PointToClient method, 120
PointToScreen method, 120
polymorphism, 150, 152–53, 158–59
pooling connections, 207–9
Pop method, Stack object, 90
Popup event, 129
position-related methods, 120
position-related properties, 117
PPmt function, 286–87
Prefix property, 236
Prepare method, 214
PrimaryKey property, 239
PrintControl object, 116
PrintDialog control, 116
Printer object, 23
PrintPreviewControl control, 116
PrintPreviewDialog control, 116
Private scope qualifier, 178, 181, 188
ProductName property, 119

.NET CLR Data Performance object

315

ProductVersion property, 119
programming errors. See also exception handling

build vs. run-time, 53
handling in ADO.NET, 204–5
handling in Visual Basic .NET, 13

programming languages
choosing among, 17–19
cross-language interoperability, 16–17

programming-related namespaces, 147
ProgressBar control, 115
properties

accessibility-related, 118–19
color-related, 118
Command object, 213–14
Connection object, 199–200
creation-related, 119
DataAdapter object, 241
DataReader object, 226
DataSet object, 236
defined, 140, 142
focus-related, 118
graphics-related, 118
keyboard-related, 118
list common to most controls, 116–19
mouse-related, 118
overriding, 160
position-related, 117
reading and writing, 142–44
setting, 112
size-related, 117
SortedList object, 100–101
text-related, 117–18

Property Browser, Visual Studio .NET, 34–35
PropertyChanged event, 125
Protected Friend keyword, 39, 178, 185–86, 188
Protected keyword, 39, 178, 182–85, 188
Provider property, 199
Public scope qualifier, 178, 181, 182, 189
Pubs database, 202, 222
Push method, Stack object, 90

Q
queries, 216, 219, 232–33
QueryContinueDrag event, 124
Queue object, 91–92
queues, 91–92

R
RadioButton control, 115
Range Validator control, 274
Rank property, 76
RDO Data controls, 116
Read method, 227
ReadCommitted isolation level, 211
ReadOnly keyword, 39
ReadOnly property, 160
ReadOnlyCollectionBase class, 103–4
ReadUncommitted isolation level, 210
ReadXml method, 237
ReadXmlSchema method, 237
RecordsAffected property, 226
Recordset type, 27–29, 30
RectangleToClient method, 120
RectangleToScreen method, 120
reflection-related namespaces, 148
Refresh method, 121, 224
Regular Expression Validator control, 274
RejectChanges method, 236
Relations property, 236
ReleaseObjectPool method, 200, 207
Remove method

ArrayList class, 93
IDictionary interface, 88
IList interface, 87
SortedList object, 101

RemoveAt method
IList interface, 87
SortedList object, 101

RemoveHandle keyword, 38
RemoveRange method, 94
Repeat method, 92
RepeatableRead isolation level, 211
RequiredFieldValidator control, 260, 267, 274
Reset method, 236
ResetBackColor method, 121
ResetCommandTimeout method, 214
ResetCursor method, 122
ResetForeColor method, 121
ResetText method, 122
Resize event, 125
resizing

controls, 113
forms, 143

resizing

316

resultsets, multiple, 232–33
Return keyword, 39
Reverse method, 80–81, 95
RichTextBox control, 115
Right property, 117
RightToLeft property, 117
Rollback method, 210
RollbackTrans method, 209
RowUpdated event, 241
RowUpdating event, 241
run-time errors, defined, 53. See also exception

handling

S
Save method, 213
SAVE TRAN statement, 212
SaveFileDialog control, 116
Scale method, 121
SchemaOnly value, 218
scope qualifiers

Friend, 178, 182, 188
overview, 178, 181–82
Private, 178, 181, 188
Protected, 178, 182–85, 188
Protected Friend, 178, 185–86, 188
Public, 178, 181, 182, 189

scopes, nested, 43
Screen object, 23
ScrollableControl class, 114
sealed classes, 174–77
Select event, 129
Select method, 122
SelectCommand property, 241, 242
SelectionChanged event handler, 266
SelectNextControl method, 122
SendToBack method, 120
SequentialAccess value, 217–18
Serializable isolation level, 211
server controls, 259, 260, 264
ServerVersion property, 199
Service Description Language (SDL), 290
Service1.asmx file, 295
Set method, 89
SetAll method, 89
SetBounds method, 120

SetByIndex method, 101
SetClientSizeCore method, 120
SetNewControls method, 121
SetSize method, 120
Shadows keyword, 39, 170–73
Shape control, 116
shared members

inheriting, 157–58
redefining, 173–74

Short data type, 14, 39
shortcut keys, 129
Show method, 121, 142
ShowFocusCues property, 118
ShowKeyboardCues property, 118
Single data type, 14
SingleResult value, 217
SingleRow value, 217
Size method, 143
Size property, 117
size-related methods, 120
size-related properties, 117
SlideBar control, 115
SOAP (Simple Object Access Protocol), 289, 290
SOAP Contract Language (SCL), 290
Solution Explorer, 148–49, 258–59, 295
Sort method, 79–81, 95
SortedList object

list of methods, 100–101
list of properties, 100–101
overview, 98–100

SortRange method, 95
Source property, Exception object, 54
Splitter control, 116
SQL Server

DELETE statement, 216
EXEC statement, 224
FOR XML queries, 216, 219
multiple database queries, 232–33
nested transactions and, 212
Query Analyzer, 222–23
SAVE TRAN command, 212
SELECT statement, 242
UPDATE SQL statement, 216

SQL Server .NET data provider, 196, 199, 200,
201, 202, 207–8, 214, 219, 220–21, 225, 231

resultsets, multiple

317

SqlBinary data type, 232
SqlBoolean data type, 231
SqlByte data type, 231
SqlCommand object, 216, 219
SqlConnection object, 201
SqlDataAdapter object, 240, 243–46
SqlDataReader object, 217
SqlDateTime data type, 231
SqlDbType value, 222, 231–32
SqlDecimal data type, 231
SqlDouble data type, 231
SqlError object, 205
SqlException object, 205
SqlGuid data type, 232
SqlInt16 data type, 231
SqlInt32 data type, 231
SqlInt64 data type, 231
SqlMoney data type, 232
SqlParameter object, 222
SqlSingle data type, 231
SQLState property, 205
SqlString data type, 232
SqlTransaction object, 210, 212–13
Stack object, 90
StackTrace property, 54
State property, 199, 203
StateChange event, 200, 203
StatusBar control, 115
stored procedures, 219, 221–24
String data type, 14
StringBuilder object, 229–30
StringCollection object, 101–3
StringDictionary object, 101–3
strings, fixed-length, 42
Structure keyword, 38
Structure...End Structure blocks, 50–52
structures, 50–52
submenus, 127
subscopes, 43
SyncLock keyword, 39
System namespace

defined, 46
list of second-level namespaces, 147–48

System.CodeDom namespace, 46, 147
System.Collections namespace

ArrayList class, 92–95

BitArray class, 88–90
defined, 46, 86, 147
Hashtable class, 95–98
ICollection interface, 86–88
IDictionary interface, 86–88
IList interface, 86–88
Queue class, 91–92
SortedList class, 98–101
Stack class, 90
StringCollection class, 101
StringDictionary class, 101

System.ComponentModel namespace, 46, 147
System.ComponentModel.Design namespace, 46
System.Configuration namespace, 147
System.Data namespace, 46, 147
System.Data.OleDb namespace, 46
System.Data.SqlClient namespace, 46
System.Data.SqlTypes namespace, 231–32
System.Diagnostics namespace, 46, 147
System.DirectoryServices namespace, 46, 147
System.Drawing namespace, 46, 148
System.Drawing.Drawing2D namespace, 46
System.Drawing.Imaging namespace, 47
System.Drawing.Printing namespace, 47
System.Drawing.Text namespace, 47
System.Globalization namespace, 47, 147
System.IO namespace, 47, 147
System.Management namespace, 147
System.Messaging namespace, 47, 147
System.Net namespace, 47
System.NET namespace, 147
System.Net.Sockets namespace, 47
System.Reflection namespace, 47, 148
System.Reflection.Emit namespace, 47
System.Resources namespace, 47, 147
System.Runtime.CompilerServices namespace,

148
System.Runtime.InteropServices namespace, 47,

148
System.Runtime.Remoting namespace, 48, 148
System.Runtime.Serialization namespace, 148
System.Runtime.Serialization.Formatters.Binary

namespace, 48
System.Runtime.Serialization.Formatters.Soap

namespace, 48
System.Security namespace, 48, 148

System.Security namespace

318

System.Security.Cryptography namespace, 48
System.Security.Permissions namespace, 48
System.ServiceProcess namespace, 48, 147
System.Text namespace, 147
System.Text.RegularExpressions namespace, 48,

147
System.Threading namespace, 48, 147
System.Timers namespace, 48, 147
System.Type object, 238
System.Web namespace, 48, 148
System.Web.Services namespace, 148
System.Web.UI namespace, 49
System.Web.UI.HtmlControls namespace, 49
System.Web.UI.WebControls namespace, 49
System.Web.UI.Web.Services namespace, 49
System.Web.UI.Web.Services.Protocols

namespace, 49
System.Windows.Forms namespace

class hierarchy, 113–26
Control class overview, 114
defined, 49, 148
Form class overview, 146

System.Xml namespace, 49, 147
System.Xml.Schema namespace, 49
System.Xml.Serialization namespace, 147
System.Xml.XPath namespace, 49
System.Xml.Xsl namespace, 49

T
Tab Layout Editor, Visual Studio .NET, 35–36
Tab Order command, 112–13
TabControl control, 115
TabIndex property, 112–13, 118
TableMappings property, 241
Tables property, 236
TabStop property, 118
TabStrip control, 115
TargetSite property, 54
Task List, 17
text box controls, 260, 266, 267, 268, 273, 302
Text property, 117, 143
TextBox control, 115, 116, 223
text-related properties, 117–18
threading model, in .NET Framework, 30–31
Throw keyword, 39
Timer control, 115

ToArray method, 94
ToolBar control, 115
Toolbox, Visual Studio .NET

controls in, 115–16
overview, 33–34
Web Forms tab, 259–61

ToolTip control, 116
Top property, 117
ToString method, 285
tracing, enabling, 288
TrackBar control, 115
Transaction object, 210
Transaction property, 214
transactions

in ADO.NET, 209–13
creating, 209–10
enlisting commands, 215–16
isolation levels, 210–11
named, 212–13
nested, 211–12

TreeView control, 115
TrimToSize method, 101
Try keyword, 39, 57. See also Try...Catch...Finally

construct
Try...Catch...Finally construct

errors in ADO.NET, 204–5
example, 56–63
handling anticipated exceptions, 60–61
handling unexpected exceptions, 70–73
overview, 55–56

T-SQL, 212
type checking, 13
type identity, in .NET Framework, 27–30

U
UDDI (Universal Discovery, Description, and

Integration), 291–93
Unicode keyword, 38
Update method, 121, 241
UPDATE SQL statement, 216
UpdateCommand property, 241
UpdateRowSource property, 214
UpDown control, 116
Upgrade Wizard. See Visual Basic Upgrade

Wizard

System.Security.Cryptography namespace

319

V
Validated event, 123
Validating event, 123
validation controls, 260, 277–78
Values property

Hashtable object, 98
IDictionary interface, 88
SortedList object, 101

variables, deterministic vs. indeterministic, 24–25
Variant data type, 14, 42–43
VB .NET. See Visual Basic .NET
_VIEWSTATE field, 269
virtual classes, 174–77
virtual methods, 159, 162
Visible property, 118, 288
Visual Basic

changes in Visual Basic .NET, 8–9
differences in versions, 4–5
history, 4–6
modernizing, 8
and .NET platform, 6
problems over time, 7
reasons to upgrade to Visual Basic .NET, 10–19
upgrading projects automatically, 9–10
vs. Visual Basic .NET, 3, 4, 21–52
Visual Basic .NET compatibility issues, 6–8

Visual Basic .NET. See also .NET Framework
arithmetic operators, 11–12
attributes, 12
background compiler, 17
vs. C#, 17–19
changes from Visual Basic, 8–9
compatibility issues, 6–8
creating ASP.NET Web applications, 256–70
cross-language interoperability, 16–17
data types, 14
debugger, 44–45
event handling, 40–41
function overloading, 12
inheritance, 10–11, 154–59
language differences, 37–43
list of new keywords, 38–39
Math library, 278
memory management issues, 24–27
multithreading, 13, 31
new IDE features, 16–17

new language features, 10–14
object-oriented programming, 137–50
overview, 23–24
reasons to upgrade from Visual Basic, 10–19
reducing programming errors, 13
role of structures, 50–52
structured exception handling, 11
Task List in, 17
threading model, 30–31
type identity issues, 27–30
vs. Visual Basic, 3, 4, 21–52

Visual Basic Upgrade Wizard, 26, 37, 39, 43
Visual Studio .NET

form designer, 110–13
Menu Editor, 32–33
overview, 31–32
Property Browser, 34–35
Tab Layout Editor, 35–36
Toolbox, 33–34

VScrollBar control, 115
.vsdisco files, 259, 302, 303

W
W3C (World Wide Web Consortium), 391
WaitForPendingFinalizers method, 27
Web Forms

adding to projects, 280–82
cleanup stage, 277
code module, 261
creating, 256–70
event handling stage, 277
HTML-based template, 261–64
life cycle, 276–77
list of project files, 259
page initialization stage, 277
page load stage, 277
role of ASP.NET, 262
running, 267–68
server controls, 264
structure, 262–63
Visual Basic .NET support for, 16, 37

Web Forms Page framework
base class, 262–63
WebForm1.aspx file, 263
WebForm1.aspx.vb file, 263

Web Forms Page framework

320

Web services
adding proxy classes, 302–3
vs. ASP.NET, 289
building client program, 301–2
building ConsumeEightBall project, 299–301
building MagicEightBall project, 294–96
communication standards, 290–91
finding out what is available, 291–93
future potential, 293–94
namespaces, 148
overview, 289–90
running, 296–99
Visual Basic .NET support for, 16

Web Services Description Language (WSDL),
290–91, 302, 303

Web.config file, 259
WebForm1.aspx file, 259, 262, 263, 279–80, 288
WebForm1.aspx.cs file, 263
WebForm1.aspx.vb file, 263, 264–65, 275–76
When keyword, 39
Width property, 117
windowless controls, 116
Windows 2000 Component Services, 207
Windows Common Controls, 115–16
Windows Forms

class hierarchy, 113–26
code generation, 110–12
controls overview, 115–16
defined, 15
designing and modifying menus, 126–33
events common to controls, 123–25
faster development, 15
form designer, 110–13
methods common to controls, 120–22

.NET single standard, 36–37
overview, 109
properties common to controls, 116–19
role of GDI+, 15
support for internationalization, 16

wizards
Data Adapter Configuration Wizard, 243–46
Visual Basic Upgrade Wizard, 26, 37, 39, 43

WorkstationId property, 200, 202
WriteOnly keyword, 39
WriteOnly property, 160
WriteXml method, 237
WSDL (Web Services Description Language),

290–91, 302, 303

X
XML (Extensible Markup Language), Visual Basic

.NET support, 16
XML schema definition language (XSD), 292
XmlReader object, 216, 219
Xor method, 89

Web services

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2003 by Michael Halvorson

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or
by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Halvorson, Michael.

Microsoft Visual Basic .NET Step by Step: Version 2003 / Michael Halvorson.
p. cm.

Includes index.
ISBN 0-7356-1905-0
1. Microsoft Visual Basic. 2. Basic (Computer program language) 3. Microsoft

.NET. I. Title.

QA76.73.B3H3385 2003
005.2'768--dc21 2002045517

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWT 8 7 6 5 4 3

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information
about international editions, contact your local Microsoft Corporation office or contact Microsoft Press
International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send
comments to mspinput@microsoft.com.

ActiveX, FoxPro, FrontPage, Microsoft, Microsoft Press, Microsoft QuickBasic, MSDN, MS-DOS,
Outlook, PowerPoint, Visual Basic, Visual C++, Visual C#, Visual InterDev, Visual J#, Visual Studio,
Windows, and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in
the United States and/or other countries. Other product and company names mentioned herein may be the
trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people,
places, and events depicted herein are fictitious. No association with any real company, organization,
product, domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

Acquisitions Editor: Robin Van Steenburgh
Project Editor: Denise Bankaitis
Technical Editor: Julie Xiao

Body Part No. X09-45376

D
ep

lo
yi

ng
 A

pp
lic

at
io

ns
1

4
Te

xt
 F

ile
s

an
d

S
tr

in
g

P
ro

ce
ss

in
g

A
ut

om
at

in
g

A
pp

lic
at

io
ns

361

Chapter

Deploying Visual Basic .NET
Applications

In this chapter, you will learn how to:

� Add a deployment project to your solution.

� Run the Setup Wizard to create a setup program for your application.

� Customize your setup program by using properties and build settings.

� Test installing and uninstalling your application.

When your Microsoft Visual Basic .NET application is finished, you might
want to distribute it to other computer users in your workgroup, share it with
friends on the Internet, or sell it to paying customers. Microsoft Visual Studio
.NET helps you distribute your Visual Basic applications by providing several
options for deployment—that is, installing the application on one or more com-
puter systems. In this chapter, you’ll learn how to deploy Visual Basic applica-
tions by adding a deployment project to your solution, and you’ll run the Setup
Wizard to create the installation files that you need. In addition, you’ll learn
how to customize your installation by using property settings and adjusting the
deployment options in your build configuration.

Building a deployment project is a complex process, and you’ll find that each
edition of Visual Basic .NET offers a slightly different assortment of installation
options. For example, Visual Basic .NET Standard doesn’t include the Setup
Wizard to automate a typical deployment. Visual Studio .NET Professional and
advanced editions contain additional installation templates plus the ability to
deploy solutions on the Web and create cabinet files. As you work through this
chapter, you might see a few settings or options that aren’t available in your edi-
tion of Visual Basic .NET.

A
utom

ating A
pplications

Text Files and S
tring P

rocessing
D

eploying A
pplications

1
4

362 Part 3 Managing Corporate Data

Upgrade Notes: What’s New in Visual Basic .NET?
If you’re experienced with Visual Basic 6, you’ll notice some new features in
Visual Basic .NET, including the following:

� In Visual Basic 6, you deployed applications by using the Package
and Deployment Wizard. In Visual Studio .NET, you deploy applica-
tions by adding a deployment project to the solution you want to dis-
tribute and configuring the deployment project for the type of
installation that you want to perform.

� Visual Basic 6 applications typically relied on COM (Component
Object Model) components, and over time we’ve realized that COM
components can be problematic to install, register, and uninstall.
Visual Studio addresses this problem by installing the .NET Frame-
work class libraries on client computers (if necessary), packing appli-
cations in assemblies, and eliminating most COM dynamic-link
libraries (DLLs).

� Visual Basic .NET applications can now be installed without interact-
ing with the computer’s system registry (the so-called XCOPY installa-
tion), but in practice I recommend that you install and uninstall
Visual Basic .NET applications by using the Visual Studio deployment
tools and the Windows Installer.

Planning a Deployment
In the early days of personal computer programming, creating an application
that could be installed successfully on another computer was often as simple as
compiling an .exe file for your project and copying it to a floppy disk. As appli-
cation programs have become more sophisticated, however, the number of files
needed for a typical installation has grown from a handful of files to several
hundred or more. Although the Microsoft Windows operating system has
helped to reduce the overall scope of application development (by providing
common application services such as printing, Clipboard functionality, memory
management, and user interface support), Windows applications have histori-
cally required sophisticated setup programs to copy the correct dynamic-link
libraries (DLLs) and support files to the host computer and to register the appli-
cation appropriately with the operating system.

A
ut

om
at

in
g

A
pp

lic
at

io
ns

Te
xt

 F
ile

s
an

d
S
tr

in
g

P
ro

ce
ss

in
g

D
ep

lo
yi

ng
 A

pp
lic

at
io

ns
1

4

Chapter 14 Deploying Visual Basic .NET Applications 363

At one time or another, most computer users have experienced the “dark side”
of installing Windows programs—an application is successfully installed but it
won’t run, or the new program creates a DLL conflict with another program
that was running fine until the new one came along. An equally irritating prob-
lem is the newly installed program that can’t be uninstalled, either because the
uninstall program no longer works or because the uninstall process leaves
DLLs, registry entries, and other support files scattered throughout the file sys-
tem. These shortcomings—known as “DLL Hell” by some of the more tortured
users and developers—are a major limitation of COM components and tradi-
tional setup programs, including (potentially) those created by the Visual Basic
6 programming system.

Visual Studio .NET was designed, in part, to address the installation shortcom-
ings of Visual Basic and Microsoft Visual C++ applications, especially those that
rely on COM components. In Visual Studio .NET, it’s possible to simplify the
installation process because Visual Studio applications rely on .NET Framework
class libraries for much of their functionality instead of on COM components and
numerous function calls to the Windows API (application programming inter-
face). In addition, Visual Studio applications are compiled as assemblies, deploy-
ment units consisting of one or more files necessary for the program to run.

Assemblies contain four elements: Microsoft intermediate language (MSIL)
code, metadata, a manifest, and supporting files and resources. MSIL code is
your program code compiled into a language that the common language run-
time understands. Metadata is information about the types, methods, and other
elements defined and referenced in your code. A manifest includes name and
version information, a list of files in the assembly, security information, and
other information about the assembly. The following illustration shows a dia-
gram of a single file assembly we’ll look at in this chapter:

Metadata
· Defined types, methods, etc.
· Referenced types, methods, etc.

Manifest
· Name and version
· File list
· Referenced assemblies
· Exported types and resources
· Security information

Lucky Seven.exe

MSIL code

A
utom

ating A
pplications

Text Files and S
tring P

rocessing
D

eploying A
pplications

1
4

364 Part 3 Managing Corporate Data

g14ip01.eps Assemblies are so comprehensive and self-describing that Visual Studio .NET
applications don’t need to be formally registered with the operating system to
run. This means that a Visual Basic .NET application can be installed by simply
copying the assembly for an application to a new computer that has the .NET
Framework installed—a process called XCOPY installation, after the MS-DOS
XCOPY command that copies a complete directory (folder) structure from one
location to another. In practice, however, it isn’t practical to deploy Visual Basic
.NET applications by using a simple copy procedure such as XCOPY (via the
command prompt) or Windows Explorer. For commercial applications, an
installation program with a graphical user interface is usually preferred, and it’s
often desirable to register the program with the operating system so that it can
be uninstalled later by using Add/Remove Programs in Control Panel. The flex-
ibility of installed Visual Basic .NET applications is impressive. For example,
Visual Basic .NET versions 2002 and 2003 can be installed side by side on a sin-
gle computer (each with its own version of the .NET Framework), and each ver-
sion runs independently without conflict.

To manage the installation process, Visual Studio .NET allows developers to
add a deployment project to their solutions, which automatically creates a setup
program for the application. This deployment project can be customized to
allow for different methods of installation, such as CD-ROMs and Web servers.
Best of all, you can add a deployment project to your solution at any time dur-
ing the development process—at the beginning, when you’re just defining your
solution; at the end, when you’re ready to distribute your solution; or in the
middle, when you’re having difficulty with some code and want to do some-
thing else for a few hours.

Different Ways to Deploy an Application
As you think about distributing your solution, consider the different methods
that you can use to deploy your application. You can

� Install the application on your own computer and register it in the
Windows system registry.

� Create an installation program that allows your application to be
installed from a local network or from the Internet.

� Deploy your application using one or more CD-ROMs.
� Deploy your application using cabinet files (.cab), a technique that

can be used to download files by using a Web browser.

In Visual Studio, you can quickly create a deployment project by running the
Setup Wizard. You can customize the deployment project by setting various
properties. If you deploy by using CD-ROMs, your computer will need a writ-

A
ut

om
at

in
g

A
pp

lic
at

io
ns

Te
xt

 F
ile

s
an

d
S
tr

in
g

P
ro

ce
ss

in
g

D
ep

lo
yi

ng
 A

pp
lic

at
io

ns
1

4

Chapter 14 Deploying Visual Basic .NET Applications 365

able CD-ROM drive, often called a CD burner, and you’ll need to copy the
deployment files to the CD-ROMs. The .NET Framework is required on each
system that runs Visual Basic .NET applications. The .NET Framework is avail-
able as a single redistributable file (Dotnetfx.exe) on the Visual Studio .NET
Windows Component Update CD-ROM. In Visual Basic .NET 2003, a com-
pact version of the .NET Framework is available for use with mobile computing
devices. The .NET Framework will also be available as a download from the
Microsoft Web site. The default Dotnetfx.exe is quite large (more than 20 MB),
and when installed, the standard .NET Framework is approximately 30 MB.
However, Microsoft has committed to distributing the .NET Framework along
with Windows Server 2003 and future operating systems. If the target computer
already has the .NET Framework installed, you could just copy the application
and any required files to the computer, and the application should run properly.
However, to create a complete setup program, the deployment files must
include the .NET Framework redistributable.

� Note Some of the deployment files that Visual Studio creates are too large to
fit on floppy disks. It’s possible to partition a large Windows installer file into
smaller cabinet files, but some of the supporting files are still too large. If
you’re interested in deploying to floppy disks, you should create a test deploy-
ment project to verify that the deployment files will fit on 1.4 MB floppy disks.

Creating a Deployment Project
Now let’s get some practice creating an actual deployment project and setup
program for a Visual Basic application you’ve created in this book. The setup
program you create will be designed for deployment on your own system, and
you’ll have the application and its Readme file install in the c:\program
files\microsoft press\lucky seven folder. The setup program will add an applica-
tion shortcut to the user’s Programs list on the Start menu. In addition, the
setup program will register the Lucky Seven application in the Windows system
registry, and at the end of the chapter, you’ll see how Add/Remove Programs in
Control Panel can uninstall this application. This deployment can also be cop-
ied to a CD-ROM and used for CD installation.

� Important The following steps use the Setup Wizard in the Setup and
Deployment Projects folder of the New Project dialog box. If your edition of
Visual Basic .NET doesn’t include the Setup Wizard, you won’t be able to per-
form these steps. You can, however, use the Setup Project template instead to
create a deployment project manually. Skip to the section “Create a deployment
project by using the Setup Project template” later in this chapter for the impor-
tant steps you need to follow if you don’t have the Setup Wizard.

A
utom

ating A
pplications

Text Files and S
tring P

rocessing
D

eploying A
pplications

1
4

366 Part 3 Managing Corporate Data

Create a deployment project by using the Setup Wizard
1 Start Visual Studio, and open the Lucky Seven project in the

c:\vbnet03sbs\chap14\lucky seven folder.
The Lucky Seven solution is identical to the Track Wins program you
created in Chapter 10. It’s a slot machine game that displays a bit-
map if the number 7 appears one or more times on the form when
you click the Spin button.

2 On the File menu, click New, and then click Project.
Visual Studio opens the New Project dialog box.
Now you’ll add a deployment project to the solution that will auto-
matically create a setup program for this application. Although most
of the solutions you’ve created in this book have contained only one
project, solutions that include a setup program have a minimum of
two projects. (As you’ll see, you use Solution Explorer to manage
these projects.)

3 Click the Setup and Deployment Projects folder.
This option presents four templates and a wizard that you can use
to create the deployment project. The New Project dialog box will
look like this:

g14ip02.eps The four templates are designed to configure many of the settings in
the deployment project for you. The Cab Project template configures

A
ut

om
at

in
g

A
pp

lic
at

io
ns

Te
xt

 F
ile

s
an

d
S
tr

in
g

P
ro

ce
ss

in
g

D
ep

lo
yi

ng
 A

pp
lic

at
io

ns
1

4

Chapter 14 Deploying Visual Basic .NET Applications 367

the deployment project to create one or more cabinet files for the
project. (You determine the size of the files.) Choose this option if
you want to have users download the solution from the Internet (rec-
ommended for older browsers that can’t accommodate a full Web
setup). The Merge Module Project template is designed to create a
general-purpose deployment project that can be used for several dif-
ferent Visual Basic applications. (It creates a .msm file that can be
merged into other solutions.) The Setup Project template creates a
setup program that uses the Windows Installer for installation. The
Web Setup Project creates a setup program that uses the Windows
Installer and a Web server for installation over the Internet.
Perhaps the most useful item in the Templates pane of the New
Project dialog box is the Setup Wizard, which is a wizard that builds a
deployment project based on how you answer several questions about
installation media, Web preferences, and so on. You can use the Setup
Wizard to create a cabinet project, a merge module project, a Win-
dows Installer project, or a Windows Installer project for the Web.

� Tip If you click the More button in the New Project dialog box, you can
also specify a separate name and folder for the solution you’re creating.
This isn’t required, but it is a useful way to isolate the deployment files that
you’re creating.

4 Click the Setup Wizard icon.
5 Type Lucky in the Name text box, and specify c:\vbnet03sbs\chap14

in the Location text box.
6 Click the Add To Solution option button, and then click OK.

The Add To Solution option button is important here—if you don’t
click it, Visual Studio will close the Lucky Seven solution before it
opens the deployment project, and you’ll miss the benefits of com-
bining the application with the setup files.
When you click OK, Visual Studio starts the Setup Wizard, which
you’ll complete in the following exercise.

Run the Setup Wizard
1 Read the first dialog box displayed by the Setup Wizard.

Your screen will look like this:

A
utom

ating A
pplications

Text Files and S
tring P

rocessing
D

eploying A
pplications

1
4

368 Part 3 Managing Corporate Data

g14ip03.eps The purpose of the Setup Wizard is to customize the new deployment
project and create an installation program for your solution. The
Setup Wizard cannot control every installation feature, but it config-
ures a basic deployment project that can be used in a variety of dif-
ferent contexts.

2 Click Next to display the Choose A Project Type dialog box.
Your screen will look like this:

A
ut

om
at

in
g

A
pp

lic
at

io
ns

Te
xt

 F
ile

s
an

d
S
tr

in
g

P
ro

ce
ss

in
g

D
ep

lo
yi

ng
 A

pp
lic

at
io

ns
1

4

Chapter 14 Deploying Visual Basic .NET Applications 369

g14ip04.eps The Choose A Project Type dialog box lets you control how your
solution will be distributed. The options map closely to the deploy-
ment templates you saw earlier in the New Project dialog box. In this
exercise, you’ll accept the default deployment type—Create A Setup
For A Windows Application.

3 Click Next to display the Choose Project Outputs To Include dialog
box.
You use this dialog box to identify the files that you want to include
on the systems that will run your application. The Primary Output
option is usually mandatory—by selecting it, you include the .exe file
for your project or .dll if you’re creating a dynamic-link library. The
other options allow you to include information that might be useful
in internationally deployed applications (Localized Resources) and
in programs that might require further debugging (Debug Symbols)
or development work (Content Files/Source Files).

4 Click the Primary Output option.
Your screen will look like this:

g14ip05.eps 5 Click Next to display the Choose Files To Include dialog box.
In this dialog box, you pick additional files that you want to include
with your deployment project, such as a Readme.txt file, trouble-
shooting tips, marketing information, and so on.

6 Click the Add button to add a Readme.txt file to this solution.
I created a simple Readme.txt file in the c:\vbnet03sbs\chap14 folder
with which you can practice.

A
utom

ating A
pplications

Text Files and S
tring P

rocessing
D

eploying A
pplications

1
4

370 Part 3 Managing Corporate Data

7 Browse to the c:\vbnet03sbs\chap14 folder, select the Readme.txt file,
and then click Open.
Your screen will look like this:

g14ip06.eps 8 Click the Next button to display the Create Project dialog box.
A summary of your deployment selections is listed, as shown here:

g14ip07.eps

A
ut

om
at

in
g

A
pp

lic
at

io
ns

Te
xt

 F
ile

s
an

d
S
tr

in
g

P
ro

ce
ss

in
g

D
ep

lo
yi

ng
 A

pp
lic

at
io

ns
1

4

Chapter 14 Deploying Visual Basic .NET Applications 371

If you want to change any selections you’ve made, click the Back but-
ton and make your adjustments, and then click Next until this dialog
box is visible again.

9 Click Finish to create the deployment project for the Lucky Seven
application.
Visual Studio adds a deployment project named Lucky to the solu-
tion, and it appears as another component in Solution Explorer. The
File System Editor also appears, as shown here:

g14ip08.eps You use the File System Editor to add project output, files, and other
items to a deployment project and to determine where they’ll be
placed on the computer receiving the installation. The File System
Editor displays a standard set of folders that correspond to the stan-
dard folder structure on the setup computer. You can customize this
folder list and add special folders if you want. You can also create
application shortcuts by using the File System Editor.
Take a moment to examine the contents of the Lucky deployment
project in Solution Explorer. You’ll see the .NET Framework depen-
dency in the Detected Dependencies folder, a placeholder for the .exe
file (called Primary Output), and the Readme.txt file you included.

File System Editor

A
utom

ating A
pplications

Text Files and S
tring P

rocessing
D

eploying A
pplications

1
4

372 Part 3 Managing Corporate Data

g14ip09.eps

� Tip Although the .NET Framework is listed as a dependency, you can’t
include it within the installation files. If you try to include the .NET Frame-
work by changing the Exclude property for the dependency to False, an
error will be displayed when you build the solution. Earlier betas of Visual
Studio .NET 2002 did allow you to include the .NET Framework. This
change was made because including the .NET Framework within the instal-
lation files doesn’t allow the .NET Framework to be separately updated
when fixes and new versions are released. Visual Studio .NET 2003
doesn’t allow you to include the .NET Framework component in your appli-
cation installation, either—your user must install the .NET Framework
first, before he or she installs an application built by Visual Basic .NET.

10 Skip to the “Customizing Your Deployment Options” section later in
this chapter.

The following section describes how to create the Lucky deployment project
without using the Setup Wizard. If you’ve already created the deployment
project, you can skip to the “Customizing Your Deployment Options” section
to learn how to customize your deployment project.

Create a deployment project by using the Setup Project template
1 Start Visual Studio, and open the Lucky Seven project in the

c:\vbnet03sbs\chap14\lucky seven folder.
2 On the File menu, click New, and then click Project.

Visual Studio opens the New Project dialog box.
Now you’ll add a deployment project to the solution that will auto-
matically create a setup program for this application.

Lucky deployment project

A
ut

om
at

in
g

A
pp

lic
at

io
ns

Te
xt

 F
ile

s
an

d
S
tr

in
g

P
ro

ce
ss

in
g

D
ep

lo
yi

ng
 A

pp
lic

at
io

ns
1

4

Chapter 14 Deploying Visual Basic .NET Applications 373

3 Click the Setup and Deployment Projects folder.
This option presents the Setup Project template, which can be used to
create a Windows Installer setup program. The New Project dialog
box will look like this:

g14ip10.eps 4 Click the Setup Project icon.
5 Type Lucky in the Name text box, and specify c:\vbnet03sbs\chap14

in the Location text box.
6 Click the Add To Solution option button, and then click OK to create

the deployment project for the Lucky Seven application.
Visual Studio adds a deployment project named Lucky to the solu-
tion, and it appears as another component in Solution Explorer. The
File System Editor also appears, letting you add project output, files,
and other items to a deployment project and determine where they’ll
be placed on the computer receiving the installation.
Now you’ll need to add the Lucky Seven.exe file (called Primary Out-
put) to the Lucky deployment project.

7 Make sure the Lucky deployment project is selected in Solution
Explorer.

8 On the Project menu, click Add, and then click Project Output.
The Add Project Output Group dialog box appears, as shown here:

A
utom

ating A
pplications

Text Files and S
tring P

rocessing
D

eploying A
pplications

1
4

374 Part 3 Managing Corporate Data

g14ip11.eps You use this dialog box to identify the files that you want to include
on the systems that will run your application. The Primary Output
option is usually mandatory—by selecting it you include the .exe file
for your project or .dll if you’re creating a dynamic-link library.

9 Click the Primary Output item, and then click OK.
A Primary Output component is added to the Lucky project in Solu-
tion Explorer. In addition, the .NET Framework dependency is
added to the Detected Dependencies folder in Solution Explorer.

10 With the Lucky project still selected in Solution Explorer, click the
Project menu, click Add, and then click File to display the Add Files
dialog box.
In this dialog box, you pick additional files that you want to include
with your deployment project, such as a Readme.txt file, trouble-
shooting tips, marketing information, and so on.
I created a simple Readme.txt file in the c:\vbnet03sbs\chap14 folder
with which you can practice.

11 Browse to the c:\vbnet03sbs\chap14 folder, select the Readme.txt file,
and then click Open.
The Readme.txt file is added to the Lucky project in Solution
Explorer. Solution Explorer, along with the open File System Editor,
is shown here:

A
ut

om
at

in
g

A
pp

lic
at

io
ns

Te
xt

 F
ile

s
an

d
S
tr

in
g

P
ro

ce
ss

in
g

D
ep

lo
yi

ng
 A

pp
lic

at
io

ns
1

4

Chapter 14 Deploying Visual Basic .NET Applications 375

g14ip12.eps You’ll now learn how to customize your deployment project.

Customizing Your Deployment Options
Your deployment project is basically ready to go now—the next time that you
build your solution, the necessary setup program will be generated in the
c:\vbnet03sbs\chap14\lucky folder and stored in an .msi (Windows Installer)
file, which you can use to deploy your application. However, there are still a
few customization options that you might want to set to fine-tune your pro-
gram deployment. In this section, I’ll discuss how you use the Configuration
Manager to modify your build settings, how to create a shortcut to your appli-
cation, and how you can change useful property settings, such as the company
name and version information your setup program displays.

Configure build settings
1 Click the Configuration Manager command on the Build menu.

You’ll see this dialog box:

File System Editor

A
utom

ating A
pplications

Text Files and S
tring P

rocessing
D

eploying A
pplications

1
4

376 Part 3 Managing Corporate Data

g14ip13.eps The Configuration Manager dialog box shows the current build
mode for the projects in your solution. The Lucky Seven project and
the Lucky deployment project are probably set to debug build, mean-
ing that the compiler will generate files containing additional infor-
mation for debugging and testing. When you’re preparing your final
projects for distribution, it’s important to use the Configuration
Manager dialog box to set all projects for release build.

2 Click the Active Solution Configuration drop-down list box, and
then select Release.

3 Click the Configuration option for the Lucky project, and then click
Release.

4 Click the Configuration option for the Lucky Seven project, and then
click Release.
The Configuration Manager now shows that both projects are set for
release builds. If you need to switch back to a debug build later, you
should be able to just select Debug in the Active Solution Configura-
tion drop-down list box.

5 Add check marks to the Build check boxes for both the Lucky project
and the Lucky Seven project.

� Tip If you remove the check mark from the Build check box in Configu-
ration Manager, Visual Studio won’t compile that project when either the
Build Solution command on the Build menu or the Start command on the
Debug menu is selected. Although you won’t want to remove the check
mark for your final builds, removing it can be useful while you work on a
solution because building the deployment project can be time consum-
ing, and the check mark isn’t necessary if you’re just working on the
application project.

6 Click the Close button.

A
ut

om
at

in
g

A
pp

lic
at

io
ns

Te
xt

 F
ile

s
an

d
S
tr

in
g

P
ro

ce
ss

in
g

D
ep

lo
yi

ng
 A

pp
lic

at
io

ns
1

4

Chapter 14 Deploying Visual Basic .NET Applications 377

Next you’ll use the File System Editor to create a shortcut to the Lucky Seven
application so that users can easily start it.

Create an application shortcut
1 Select the Application Folder in the left pane of the File System

Editor.

� Tip If the File System Editor isn’t visible, you can open it by first select-
ing the Lucky deployment project in Solution Explorer. Next click the View
menu, click Editor, and then click File System.

2 In the right pane, right click Primary Output From Lucky Seven, and
then select Create Shortcut To Primary Output From Lucky Seven.
A shortcut icon appears with its name selected so that it can be
renamed.

3 Rename the shortcut Lucky Seven, and then press Enter.
4 Drag the Lucky Seven shortcut into the User’s Programs Menu folder

in the left pane.
The contents of the User’s Programs Menu folder will look like this:

g14ip14.eps When this application is installed, a shortcut will be added to the
user’s Programs menu, which can be accessed from the Start button
on the Windows taskbar.

Now you’ll set the company name and version information for your setup
program.

Set company name and version information
1 Select the Lucky deployment project in Solution Explorer.
2 Open the Properties window, and enlarge it so that it’s big enough to

show several of the deployment project properties and settings.
The Lucky deployment project properties fill the Properties window
because Lucky is the project that’s currently selected in Solution
Explorer. The properties aren’t related to visible objects in the project

A
utom

ating A
pplications

Text Files and S
tring P

rocessing
D

eploying A
pplications

1
4

378 Part 3 Managing Corporate Data

but rather are optional settings related to how the application is
installed on a new computer. The Author and Manufacturer proper-
ties are usually set to the name of the company producing the soft-
ware, and this value is also used to construct the default path for
your program on disk. (For an example of this pattern, see the c:\pro-
gram files folder.) Once the application is installed, the Author prop-
erty is also displayed in the Contact field of the Support Info dialog
box, which you can access for individual applications through Add/
Remove Programs in Control Panel.
The Title property contains the name of the setup program, and the
Version property allows you to specify version information for your
setup program. A few properties, such as Product Code and Package
Code, contain unique alphanumeric codes generated by Visual Studio
that you can use to identify individual releases of your setup pro-
gram. (Note that these property settings apply to the setup program
and not the Lucky Seven application.)

3 Change the Author and Manufacturer properties to Microsoft Press
by using the Properties window.

4 Change the Version property to 1.5.0 by using the Properties window.
When you change the Version property and press Enter, Visual Stu-
dio displays a dialog box asking whether you want to generate new
ProductCode and PackageCode numbers.

5 Click Yes to create new code numbers.
6 Spend a few moments examining the remaining property settings,

and then return the Properties window to its normal size.

Now you’ll open the Property Pages dialog box to see where the media-related
property settings are located.

Set deployment property pages
1 Select the Lucky deployment project in Solution Explorer.
2 Click the Properties command on the Project menu.

The Property Pages dialog box opens for the Lucky deployment
project, as shown here:

A
ut

om
at

in
g

A
pp

lic
at

io
ns

Te
xt

 F
ile

s
an

d
S
tr

in
g

P
ro

ce
ss

in
g

D
ep

lo
yi

ng
 A

pp
lic

at
io

ns
1

4

Chapter 14 Deploying Visual Basic .NET Applications 379

g14ip15.eps This dialog box gives you an opportunity to rethink a few of the
decisions you made in the Setup Wizard (if you used the Setup Wiz-
ard) and to customize a few additional settings that weren’t available
in the wizard. I’ll walk you through several of the settings in this dia-
log box now.
The Output File Name setting controls the name of the file your
installation files are packaged into. This is usually one large file with
an extension of .msi (Windows Installer) and a few supporting files,
such as Setup.ini and Setup.exe. These supporting files are added
based on additional deployment project options that will be dis-
cussed. The users installing your program can launch the .msi file
directly or through a Setup.exe program. When they do so, the instal-
lation process copies the .exe application file and any associated files
to the default folder for the application.

3 Click the Package Files drop-down list box.
This list box contains three options: As Loose Uncompressed Files, In
Setup File, and In Cabinet File(s). In Setup File is currently selected
because that’s the option you selected when you ran the Setup Wiz-
ard earlier; this option creates one large .msi file in the specified
folder. The As Loose Uncompressed Files option will create uncom-
pressed files in the same folder as the .msi file. The In Cabinet File(s)
option creates one or more .cab files to hold the application and
places them in the same folder as the .msi file.

4 Select the In Cabinet File(s) option.
When you select this option, the CAB Size options become available.
If you click the Custom option button, you can specify the maximum
size of each cabinet file in the Custom text box.

A
utom

ating A
pplications

Text Files and S
tring P

rocessing
D

eploying A
pplications

1
4

380 Part 3 Managing Corporate Data

5 Click the Package Files drop-down list box again, and then select In
Setup File.
In this exercise, you’ll create a single installation file that contains all
the support files you need.

6 Click the Bootstrapper drop-down list box.
The Bootstrapper list box determines whether a bootstrapping pro-
gram will be included in the setup program you’re creating. A boot-
strapping program includes the files needed to install Microsoft
Windows Installer 2.0 on the target computer if it isn’t already
installed. This version of the installer is the default version included
with Visual Studio .NET, Microsoft Windows XP, and Microsoft
Windows Server 2003, but in case your users don’t have one of these
products, it’s a good idea to include the bootstrapping programs
along with your application. In the list box, you can choose a Win-
dows-based or Web-based bootstrapping program. If you select Web
Bootstrapper, the Web Bootstrapper Settings dialog box appears, in
which you can specify the Web location for the bootstrapping files.

7 Click the Windows Installer Bootstrapper option.
8 Click the Compression drop-down list box.

The options in this list describe how your files will be packaged in
the setup program. Optimized For Size is the most common option
for developers who are trying to squeeze their installations into cabi-
net files. Optimized For Speed is the best choice if you have plenty of
media space (in other words, a CD-ROM) but you want things to
move along as quickly as possible.

9 Click the Optimized For Size option.
You’ll try to minimize the size of your single installation file because
the file will remain on your own system during the installation tests.
The final option in the Property Pages dialog box relates to the inclu-
sion of an Authenticode Signature in your project. An Authenticode
Signature is a digital document (an .spc file) that identifies you as the
manufacturer of this software product. Such a file verifies that you’re
a “reputable” software vendor and are trustworthy to the extent that
you can be located down the road if problems occur with your appli-
cation. Although the creation and use of Authenticode Signatures are
beyond the scope of this book—I won’t enable it—this is an option
you should investigate if you’re planning a commercial release of
your Visual Basic application. An Authenticode Signature allows
your program to register as a “trusted source” in the end user’s
operating system.

A
ut

om
at

in
g

A
pp

lic
at

io
ns

Te
xt

 F
ile

s
an

d
S
tr

in
g

P
ro

ce
ss

in
g

D
ep

lo
yi

ng
 A

pp
lic

at
io

ns
1

4

Chapter 14 Deploying Visual Basic .NET Applications 381

10 Click OK to save your changes in the Property Pages dialog box.
Visual Studio records your selections and is ready to compile the
projects.

Building a Deployment Project and Testing
Setup

When you’re finished adding and customizing your deployment project, you’re
ready to build the solution and test the setup program. Here are the steps you
should follow:

1 Build the solution by using the Build Solution command on the Build
menu. This command will compile the entire solution, including
the final version of the application and the deployment project
you’ve included in the solution.

2 Run the setup program to install the application. Test the setup
program and the installation process. In this exercise, you’ll launch
the setup program by double-clicking the Setup.exe file you build.

3 Test the installation and examine the installed files. Verify that the
installed application works and that the expected files (such as
Readme.txt) were installed in the proper folder.

The following exercises demonstrate this process for the Lucky Seven applica-
tion and the Lucky deployment project.

Build the project
1 Click Build Solution on the Build menu.

Visual Studio compiles both the Lucky Seven and the Lucky projects
and creates an .msi file in the c:\vbnet03sbs\chap14\lucky\release
folder. The build process takes longer than normal because Visual
Studio must package files required to deploy your application.
During longer compilations, a progress bar and a repeating compila-
tion pattern are displayed on the Visual Studio status bar, indicating
that the build process is under way. Staring at this box can be soothing.

g14ip16.eps If the compilation finishes with no errors, the words “Build Suc-
ceeded” appear on the left side of the status bar.

A
utom

ating A
pplications

Text Files and S
tring P

rocessing
D

eploying A
pplications

1
4

382 Part 3 Managing Corporate Data

2 Click the Start button on the taskbar, click Programs, click Accesso-
ries, and then click Windows Explorer.
You’ll use Windows Explorer to locate and identify the files that
were created during the build process.

3 Browse to the c:\vbnet03sbs\chap14\lucky\release folder, and then
click the Lucky.msi file once to select it.
You’ll see the following list of files:

g14ip17.eps When you specify a release build in the Configuration Manager,
Visual Studio places the compiled files in a Release folder. You speci-
fied this particular location and name for the files in the Lucky Prop-
erty Pages dialog box. In this case, Visual Studio created a setup file
(Setup.exe), an installation package for the Windows Installer
(Lucky.msi), and a configuration settings file (Setup.ini).
Because you selected the Lucky.msi file, Windows Explorer displays
the file type, author, and file size information for the file in the status
bar. The Microsoft Press author name reflects a setting you made by
using the Properties window earlier in this chapter. Lucky.msi con-
tains the LuckySeven.exe file, the Readme.txt file, and setup program
information.

A
ut

om
at

in
g

A
pp

lic
at

io
ns

Te
xt

 F
ile

s
an

d
S
tr

in
g

P
ro

ce
ss

in
g

D
ep

lo
yi

ng
 A

pp
lic

at
io

ns
1

4

Chapter 14 Deploying Visual Basic .NET Applications 383

� Tip To create an actual installation CD-ROM for your application, you
would copy the entire contents of the Release folder to a writable CD-
ROM at this point. If the target computers don’t include the .NET Frame-
work, you should also copy the .NET Framework redistributable file (Dot-
netfx.exe), which the user will have to install separately. You need a CD-
RW drive to do this; check your computer documentation to see whether
you have this capability, which is called “burning a CD” in industry slang.

Run the Setup program
1 Double-click the Setup.exe file in the c:\vbnet03sbs\chap14\lucky\

release folder to run the setup program for your application.
The Setup.exe program starts the Windows Installer program and
gives users who don’t have a copy of Windows Installer on their sys-
tem a chance to install it, which might require a reboot. After a
moment, a dialog box entitled Welcome To The Lucky Setup Wizard
appears, as shown here:

g14ip18.eps 2 Click the Next button to continue the installation.
You’ll see the following Select Installation Folder dialog box, which
prompts you for a folder location and allows you to set additional
installation options:

A
utom

ating A
pplications

Text Files and S
tring P

rocessing
D

eploying A
pplications

1
4

384 Part 3 Managing Corporate Data

g14ip19.eps Notice that the default installation folder is c:\program
files\microsoft press\lucky. The “Microsoft Press” label matches the
Author and Manufacturer property settings you made earlier in this
chapter by using the Properties window. The Everyone and Just Me
option buttons have to do with underlying security settings in the
Windows operating system.

3 Click the Everyone option button, and then click Next.
The setup program asks you to confirm your installation settings by
clicking the Next button. If you’re not sure, click Back to return to
one or more dialog boxes to verify your selections, and then click
Next until this dialog box is visible again.

4 Click Next to start the installation.
The setup program begins copying the necessary files to the folder
location you specified. The program also registers the Lucky Seven
application by using the system registry so that you can uninstall it
later if you want to.

5 Click Close when the installation is complete.

A
ut

om
at

in
g

A
pp

lic
at

io
ns

Te
xt

 F
ile

s
an

d
S
tr

in
g

P
ro

ce
ss

in
g

D
ep

lo
yi

ng
 A

pp
lic

at
io

ns
1

4

Chapter 14 Deploying Visual Basic .NET Applications 385

You did it! You created a working setup program that installs your application
in a professional manner.

� Tip If you attempt to install this application on another computer, you must
make sure that the target computer meets the minimum system requirements.
Applications created with Visual Studio .NET require Windows 98 or later with
Internet Explorer 5.01 or later, Microsoft Windows NT 4.0 Service Pack 6a or
later with Internet Explorer 5.01 or later. Windows 95 isn’t supported. The tar-
get computer also requires the .NET Framework.

Run the Lucky Seven application
1 Click the Start button on the Windows taskbar, click Programs, and

then click Lucky Seven.
Recall that this is the shortcut that you created by using the File Sys-
tem Editor.
Windows starts the program. The installation works!

� Tip You can also start the Lucky Seven program by browsing to the
c:\program files\microsoft press\lucky folder by using Windows Explorer
and then double-clicking the Lucky Seven.exe program.

2 Click the Spin button several times to play the game and verify that
everything is running properly.
After 25 spins, your screen will look like this:

g14ip20.eps 3 When you’re finished, click the End button.
You’ve tested both the setup process and the final application—
everything seems to be working fine!

A
utom

ating A
pplications

Text Files and S
tring P

rocessing
D

eploying A
pplications

1
4

386 Part 3 Managing Corporate Data

One Step Further: Examining Setup Files and
Uninstalling

As one final experiment with your installation, use Windows Explorer to exam-
ine the content of the c:\program files\microsoft press\lucky folder, and then
uninstall the Lucky Seven test application. It’s always a good idea to see exactly
what your deployment project installed and how Add/Remove Programs in
Control Panel can be used to uninstall the program files. Complete the follow-
ing exercises.

Check final installation files
1 Open Windows Explorer, and browse to the c:\program

files\microsoft press\lucky folder.
This folder contains the Lucky Seven.exe program file and the
Readme.txt file you included when you configured deployment
project properties.

2 Click the View menu in Windows Explorer, and then click Details.
Windows Explorer displays a more detailed file listing, which allows
you to see the file sizes and attributes associated with each file. Win-
dows Explorer will look like this:

g14ip21.eps From the detailed file listing, you can see that the Lucky Seven.exe
application file itself takes up only about 48 KB of disk space.
However, a significant amount of disk space will be required for
the .NET Framework. The .NET Framework files will take up 30

A
ut

om
at

in
g

A
pp

lic
at

io
ns

Te
xt

 F
ile

s
an

d
S
tr

in
g

P
ro

ce
ss

in
g

D
ep

lo
yi

ng
 A

pp
lic

at
io

ns
1

4

Chapter 14 Deploying Visual Basic .NET Applications 387

MB of disk space or more and are primarily installed in the Win-
dows\Microsoft.NET folder. Notice that these file sizes can vary
from system to system and among different builds of the Visual Stu-
dio development suite and the .NET Framework libraries, so your
exact file sizes might be different.

3 Double-click the Readme.txt file.
The simple Readme.txt file I created for the Lucky Seven program
appears in the Notepad application, as shown here:

g14ip22.eps Recall that you incorporated the Readme.txt file in your deployment
project earlier in this chapter. When you create your own applica-
tions, be sure to create a simple Readme.txt file that contains basic
usage information, instructions for uninstalling the program, and
instructions on how to contact the company for help or more infor-
mation.

4 Review the file, and then close the Notepad application.

Now you’ll practice uninstalling the Lucky Seven program and its support files.

A
utom

ating A
pplications

Text Files and S
tring P

rocessing
D

eploying A
pplications

1
4

388 Part 3 Managing Corporate Data

Uninstall the test application
1 Click the Start button on the Windows taskbar, click Settings, and

then click Control Panel.
Windows displays the Control Panel folder, containing tools for
defining basic system settings and preferences.

2 Double-click Add/Remove Programs.
Add/Remove Programs allows you to install new applications or
uninstall unwanted applications by using the application settings in
the system registry. Because you installed the Lucky Seven applica-
tion by using a setup program and the Windows Installer, Lucky is
now included in the list of installed programs.

3 Locate the Lucky application in the list of installed programs.
Your screen will look like this:

g14ip23.eps

A
ut

om
at

in
g

A
pp

lic
at

io
ns

Te
xt

 F
ile

s
an

d
S
tr

in
g

P
ro

ce
ss

in
g

D
ep

lo
yi

ng
 A

pp
lic

at
io

ns
1

4

Chapter 14 Deploying Visual Basic .NET Applications 389

4 Click the Support Information link in the Lucky application listing.
The following dialog box appears, which contains publisher, version,
and contact information. You added this information by setting
properties for the deployment project earlier in the chapter.

g14ip24.eps 5 Click Close to close the Support Info dialog box.
6 Click the Remove button in the Lucky application listing to uninstall

the program.
7 Click Yes when you’re asked to verify your decision to uninstall.

Add/Remove Programs starts the Windows Installer, which manages
the uninstall process. After a few moments, the registry entries, .exe
file, Readme file, shortcut, and supporting files for the Lucky Seven
application are removed from the system. The Lucky listing is also
removed from the list of installed programs.

8 Click Close to close Add/Remove Programs, and then close the Con-
trol Panel folder.
You’re done working with deployment projects in this chapter. You
now have the skills to install and uninstall Visual Basic .NET projects
safely. In future chapters, you’ll learn more about creating applica-
tions that are powerful, interesting, and worth deploying to friends
and coworkers.

A
utom

ating A
pplications

Text Files and S
tring P

rocessing
D

eploying A
pplications

1
4

390 Part 3 Managing Corporate Data

Lesson 14 Quick Reference
To Do this
Create a setup program
for your Visual Basic
application

Open the Visual Basic solution that you want to create a
setup program for, and then add a deployment project to it
by clicking New Project on the File menu. Click the Setup
and Deployment Projects folder, and then click a setup
template or the Setup Wizard. Specify the deployment
project name and location, select the Add To Solution
option, and then click OK.

Automatically create an
installation program for
your project

Select the Setup Wizard in the Setup and Deployment
Projects folder, and then specify settings in the wizard.

Adjust how the compiler
will build your applica-
tion

Click the Configuration Manager command on the Build
menu. Specify a release build if you’re preparing final
installation files.

Customize deployment
options

Select the deployment project in Solution Explorer, and
then set its properties by using the Properties window and
the Properties command on the Project menu.

Create an application
shortcut

In the File System Editor, right click the Primary Output
icon, and select the Shortcut To Primary Output option.
Give the shortcut a name, and drag the shortcut into the
User’s Programs Menu folder.

Compile an application
and its setup files

Click the Build Solution command on the Build menu.

Run a setup program The mechanism for launching a setup program depends on
the type of setup files you create. To run a Windows appli-
cation setup that uses the Windows Installer, double-click
the Setup.exe file or the .msi (Windows Installer) file.

Uninstall a Visual Basic
application

Visual Basic applications installed using the Windows
Installer should be uninstalled by using Add/Remove
Programs in Control Panel.

A
bb

re
v.

 C
ha

pt
er

 T
itl

e
D

is
pl

ay
in

g
H

TM
L

D
oc

um
en

ts
U

si
ng

 W
eb

 F
or

m
s

2
2

545

Chapter

Using Web Forms to Build
Interactive Web Applications

In this chapter, you will learn how to:

� Create a new Web application.

� Use the Web Forms Designer.

� Add text and formatting effects to a Web Forms page.

� Use Web Forms controls to make Web applications interactive.

� Create an HTML page.

� Use the HyperLink control to link one page to another within a Web application.

In Chapter 21, you learned how to display HTML pages in a Visual Basic .NET
application by using Microsoft Internet Explorer. In this chapter, you’ll learn
how to build your own Web applications by using the Web Forms Designer
that’s supplied with Microsoft Visual Basic .NET. Web Forms is a new program-
ming model for Internet user interfaces based on ASP.NET, the Microsoft Visual
Studio .NET Framework component designed to provide state-of-the-art Inter-
net functionality. Web Forms is a replacement for WebClasses and the DHTML
Page Designer in Visual Basic 6, and it’s distinct from the Windows Forms com-
ponents that you’ve used for most of the projects in this book. Although a com-
plete description of Web Forms and Microsoft ASP.NET isn’t possible here,
there’s enough in common between Web Forms and Windows Forms to allow
you some useful experimentation right away—even if you have little or no expe-
rience in Internet programming and HTML page design. Invest a few hours in
this chapter and see if Web Forms is for you!

A
bbrev. C

hapter Title
D

isplaying H
TM

L D
ocum

ents
U

sing W
eb Form

s
2

2

546 Part 6 Internet Programming

Upgrade Notes: What’s New in Visual Basic .NET?
If you’re experienced with Visual Basic 6, you’ll notice some new features in
Visual Basic .NET, including the following:

� A new Internet programming model called Web Forms, which is part
of ASP.NET. Web Forms and the Web Forms Designer are a replace-
ment for the Visual Basic 6 WebClasses and DHTML Page Designer,
which are no longer supported in Visual Basic .NET.

� Although the Web Forms Designer is distinct from the Windows
Forms Designer, both user interface tools offer similar controls and
support drag-and-drop programming techniques. Because the Web
Forms Designer is part of Visual Studio .NET, it’s available to Visual
Basic .NET, Microsoft Visual C# .NET, and Microsoft Visual J# .NET.

� Web Forms applications are designed to be displayed by Web brows-
ers such as Internet Explorer. The controls on Web Forms are visible
in the client’s Web browser (in other words, on the end-user’s com-
puter), but the functionality for the controls resides on the Web
server that hosts the actual Web application.

� Although many of the Web Forms controls have the same names as
the Windows Forms controls, the controls aren’t identical. For exam-
ple, Web Forms controls have an ID property, rather than a Name
property.

Inside ASP.NET
ASP.NET is Microsoft’s latest Web development platform. Although ASP.NET
has some similarities with the previous version, named ASP (Active Server
Pages), ASP.NET has been completely redesigned based on the .NET Frame-
work. Web Forms is the design component of ASP.NET that allows you to cre-
ate and manage Internet user interfaces, commonly called Web pages or (in a
more comprehensive sense) Web applications. By using Web Forms, you can
create a Web application that displays a user interface, processes data, and pro-
vides many of the commands and features that a standard application for
Microsoft Windows might offer. However, the Web application you create runs
in a Web browser such as Internet Explorer or Netscape Navigator, and it’s
stored on one or more Web servers, which display the correct Web pages and
handle most of the computing tasks required by your Web application. This dis-
tributed strategy allows your Web applications to potentially run anywhere on
the Internet while residing physically in one manageable location on the Web
server, on which rich data resources can also be stored.

A
bb

re
v.

 C
ha

pt
er

 T
itl

e
D

is
pl

ay
in

g
H

TM
L

D
oc

um
en

ts
U

si
ng

 W
eb

 F
or

m
s

2
2

Chapter 22 Using Web Forms to Build Interactive Web Applications 547

To create a Web application in Visual Basic .NET, you create a new ASP.NET
Web Application project in the Visual Studio development environment, and
then use the Web Forms Designer to build one or more Web Forms that will col-
lectively represent your program. Each Web form consists of two pieces—a Web
Forms page and a code-behind file. The Web Forms page contains HTML and
controls to create the user interface. The code-behind file is a code module that
contains program code that “stands behind” the Web Forms page. This division
is conceptually much like Windows Forms you’ve been creating in Visual
Basic—there’s a user interface component and a code module component. The
code for both of these components can be stored in a single .aspx file, but typi-
cally the Web Forms page code is stored in an .aspx file and the code-behind file
is stored in an .aspx.vb file. The following illustration shows a conceptual view
of how an ASP.NET Web application is displayed in a Web browser:

g22ip01 In addition to Web Forms, Web applications can contain code modules (.vb
files), HTML pages (.htm files), configuration information (a Web.config file),
global Web application information (a Global.asax file), and other components.
You can use the Web Forms Designer and Solution Explorer to switch back and
forth between these components quickly and efficiently.

Web Forms vs. Windows Forms
What are the important differences between Web Forms and Windows Forms?
To begin with, Web Forms offers a slightly different programming paradigm
than Windows Forms. Whereas Windows Forms uses a Windows application
window as the primary user interface for a program, Web Forms presents infor-
mation to the user via one or more Web pages with supporting program code.

Web Forms page
(.aspx)

Web browser
(Internet Explorer,

Netscape Navigator)

Code-behind file
(.aspx.vb)

Client computer
or device

Web server
Windows 2000,

Windows XP Professional,
Windows Server 2003

(Internet Information Services,
FrontPage 2000 Server Ext.

.NET Framework)

Internet

A
bbrev. C

hapter Title
D

isplaying H
TM

L D
ocum

ents
U

sing W
eb Form

s
2

2

548 Part 6 Internet Programming

These pages are viewed through a Web browser, and you can create them by
using the Web Forms Designer.

Like a Windows Form, a Web form can include text, graphic images, buttons,
list boxes, and other objects that are used to provide information, process input,
or display output. However, the basic set of controls you use to create a Web
Forms page isn’t the same as the set Visual Studio offers on the Windows Forms
tab of the Toolbox. Instead, ASP.NET Web applications must use controls on
either the HTML tab or the Web Forms tab of the Toolbox. Each of the HTML
and Web Forms controls has its own unique methods, properties, and events,
and although there are many similarities between these controls and Windows
Forms controls, there are also several important differences.

Web Forms controls are server controls, meaning they run and can be pro-
grammed on the Web server. Server controls can be identified on a Web form by
the small green icon that appears in the upper left corner of the control at
design time. HTML controls are client controls by default, meaning they run
only within the end user’s browser. HTML controls can be configured as server
controls by right clicking the controls in the Web Forms Designer and selecting
Run As Server Control or by setting their Runat attribute to Server. For now,
however, you simply need to know that you can use HTML controls, Web
Forms controls, or a combination of both in your Web application projects.

HTML Controls
The HTML controls are a set of older user interface controls that are supported
by most Web browsers and conform closely to the early HTML standards
developed for managing user interface elements on a typical Web page. They
include Button, Text Field, and Checkbox—useful base controls for managing
information on a Web page that can be represented entirely with HTML code.
Indeed, you might recognize these controls if you’ve coded in HTML before or
if you’ve had some experience with the Visual Basic 6 DHTML Page Designer.
However, although they’re easy to use and have the advantage of being a “com-
mon denominator” for most Web browsers, they’re limited by the fact that they
have no ability to maintain their own state unless they’re configured as server
controls. (In other words, the data that they contain will be lost between views
of a Web page.) The following illustration shows the HTML controls offered on
the HTML tab of the Toolbox in Visual Studio:

A
bb

re
v.

 C
ha

pt
er

 T
itl

e
D

is
pl

ay
in

g
H

TM
L

D
oc

um
en

ts
U

si
ng

 W
eb

 F
or

m
s

2
2

Chapter 22 Using Web Forms to Build Interactive Web Applications 549

g22ip02

Web Forms Controls
Web Forms controls offer more features and capabilities than HTML controls.
Web Forms controls are more capable than HTML controls and function in
many ways like the Windows Forms controls. Indeed, many of the Web Forms
controls have the same names as the Windows Forms controls and offer many of
the same properties, methods, and events. In addition to simple controls such as
Button, TextBox, and Label, more sophisticated controls such as DataGrid, Cal-
endar, and RequiredFieldValidator are also provided. The following illustration
shows some of the Web Forms controls on the Web Forms tab of the Toolbox:

g22ip0

A
bbrev. C

hapter Title
D

isplaying H
TM

L D
ocum

ents
U

sing W
eb Form

s
2

2

550 Part 6 Internet Programming

Web Browser Support
You might be wondering, “Do these exciting new controls mean that all the
users of my application will need to be using the latest, most up-to-date version
of a specific Web browser? What if such an upgrade isn’t possible for our Web
customers?”

Visual Studio .NET Web applications don’t require the latest browser—Visual
Studio .NET includes a targetSchema property for the DOCUMENT object that
allows you to target a specific Web browser and versions. The targetSchema
options are Internet Explorer 3.02 / Navigator 3.0, Internet Explorer 5.0, and
Navigator 4.0. The default is Internet Explorer 5.0. The value of the tar-
getSchema property affects the HTML code that Visual Studio generates and
the features available in Visual Studio. For example, if the targetSchema prop-
erty is set to Internet Explorer 3.02 / Navigator 3.0 and the pageLayout property
is set to GridLayout, HTML tables rather than cascading style sheets (CSS) are
used for positioning objects.

The targetSchema property won’t be discussed any further, but I’ll use the page-
Layout property later in this chapter. If you’re interested in learning more about
targetSchema, search the Visual Studio online Help for the topic “targetSchema.”

Getting Started with a Web Application
The best way to learn about ASP.NET and Web applications is to get some
hands-on practice. In the exercises in this chapter, you’ll create a simple Web
application. This application is a car loan calculator that determines monthly
payments and displays a second Web page containing Help text. You’ll begin by
verifying that Visual Studio is properly configured for ASP.NET programming,
and then you’ll create a new Web application project. Next you’ll use the Web
Forms Designer to create a Web Forms page with text and links on it, and you’ll
add controls to the Web Forms page by using controls on the Web Forms tab of
the Toolbox.

Installing the Software for ASP.NET Programming
Before you write your first ASP.NET Web application, you need to verify that you
have the necessary support files on your system. ASP.NET Web applications rely
on a Web server running Windows 2000, Windows XP Professional, or Windows

A
bb

re
v.

 C
ha

pt
er

 T
itl

e
D

is
pl

ay
in

g
H

TM
L

D
oc

um
en

ts
U

si
ng

 W
eb

 F
or

m
s

2
2

Chapter 22 Using Web Forms to Build Interactive Web Applications 551

Server 2003 that has an installation of Microsoft Internet Information Services
(IIS), the Microsoft FrontPage 2000 Server Extensions, and the .NET Framework
libraries. You need to verify that you have these components installed now either
locally on your own computer or through a server connection.

� Important Windows XP Home Edition doesn’t include or support IIS and the
FrontPage 2000 Server Extensions, which means you cannot create ASP.NET
Web applications locally by using Windows XP Home Edition. However, it’s possi-
ble to create ASP.NET Web applications using Windows XP Home Edition by
accessing a properly configured remote Web server. This chapter assumes that
you’re using Windows 2000, Windows XP Professional, or Windows Server
2003 and that your Web server is local.

Fundamentally, this is a Visual Studio .NET Setup issue—during the installation
of the Visual Studio .NET software, a setup routine called Windows Compo-
nent Update analyzed your system to see whether you had the capability to cre-
ate local Web projects. If you didn’t have the necessary support files, you were
asked to install IIS and the FrontPage 2000 Server Extensions by using your
original Windows 2000, Windows XP Professional, or Windows Server 2003
setup CD-ROMs. If you ignored these messages at the time and didn’t install
the necessary support files, you’ll need to install the files now to enable your
system for ASP.NET programming.

� Note Microsoft recommends that you install IIS and the FrontPage 2000
Server Extensions before you install the .NET Framework and Visual Studio .NET
because the .NET Framework must register extensions with IIS. If you install IIS
and the FrontPage 2000 Server Extensions after the .NET Framework, you’ll
need to repair the .NET Framework as described in the following steps to
ensure that it’s configured properly.

If you find that you don’t have IIS and the FrontPage 2000 Server Extensions
installed to start programming with ASP.NET, follow these steps:

Install IIS and the FrontPage 2000 Server Extensions
1 On the Windows Start menu, click Settings, and then click Control

Panel.
2 Double-click Add/Remove Programs.
3 In the Add/Remove Programs dialog box, click Add/Remove Win-

dows Components.
4 In the Windows Components Wizard, click Internet Information Ser-

vices (IIS), and then click Details.

A
bbrev. C

hapter Title
D

isplaying H
TM

L D
ocum

ents
U

sing W
eb Form

s
2

2

552 Part 6 Internet Programming

5 If FrontPage 2000 Server Extensions and World Wide Web Server
aren’t already selected, click the check boxes shown in the following
illustration:

g22ip04

� Note If the FrontPage 2000 Server Extensions and World Wide Web
Server options are already checked, your computer is probably already
configured for ASP.NET programming. You can cancel the installation and
continue at the section “Create a new Web application.”

6 Click OK.
7 Click Next to start your installation of the files, and follow the

instructions that appear.
You might be prompted to insert your Windows 2000, Windows XP
Professional, or Windows Server 2003 CD-ROM during the installa-
tion process.

If it was necessary to install IIS and the FrontPage 2000 Server Extensions, fol-
low the steps in the following procedure to repair the .NET Framework.

Repair the .NET Framework
1 If you’re using Visual Studio .NET CD-ROMs, insert the Windows

Component Update CD-ROM. If you’re using a Visual Studio. NET
DVD, insert the DVD.

A
bb

re
v.

 C
ha

pt
er

 T
itl

e
D

is
pl

ay
in

g
H

TM
L

D
oc

um
en

ts
U

si
ng

 W
eb

 F
or

m
s

2
2

Chapter 22 Using Web Forms to Build Interactive Web Applications 553

If you’re using CD-ROMs, a message might be displayed to insert
Disk 1. Ignore this message and click OK.

2 On the Windows Start menu, click Run.
The Run dialog box appears.

3 If you’re using Visual Studio .NET CD-ROMs, type the following
command in one long line in the Open text box, replacing
<CDdrive> with your CD-ROM drive letter:
<CDdrive>:\dotNetFramework\dotnetfx.exe /t:c:\temp
/c:"msiexec.exe /fvecms c:\temp\netfx.msi”

If you’re using a Visual Studio .NET DVD, type the following com-
mand in one long line in the Open text box, replacing <DVDdrive>
with your DVD drive letter:
<DVDdrive>:\wcu\dotNetFramework\dotnetfx.exe /t:c:\temp
/c:"msiexec.exe /fvecms c:\temp\netfx.msi”

4 Click OK.
A message will appear asking whether you want to install the
Microsoft .NET Framework Package.

5 Click Yes.

After you complete the .NET Framework repair process, your computer should
be ready for ASP.NET programming.

� Note Because the Visual Studio .NET software installation hasn’t been per-
formed in the order that Microsoft recommends, you still might encounter prob-
lems when creating Web applications. For example, you might not be able to
create a new ASP.NET Web application project, or the Web application might not
display properly in a Web browser. If you still encounter problems after perform-
ing the steps in this section, check out the following resources:

Setup\WebServer.htm and Setup\WebServerInfo.htm on Visual Studio .NET
CD1 or DVD

“Visual Studio .NET Software Requirements” and “Troubleshooting Web
Projects” topics in the Visual Studio online Help

After you’ve loaded the necessary support files, you’re ready to build your first
ASP.NET Web application.

Create a new Web application
1 Start Visual Studio, and open the New Project dialog box.
2 In the New Project dialog box, click the ASP.NET Web Application

icon in the Visual Basic Projects folder.

A
bbrev. C

hapter Title
D

isplaying H
TM

L D
ocum

ents
U

sing W
eb Form

s
2

2

554 Part 6 Internet Programming

When you select this icon, Visual Studio will prepare the develop-
ment environment and your program files for Internet programming.
Creating a new ASP.NET Web application project is similar to creat-
ing a Windows Application project. However, the Name text box is
disabled, and the Location text box is a different type of setting. In a
Web application environment, you’re directed to specify a Web server
for your project or accept the default value of http://localhost. As I
mentioned earlier, you can choose a local or remote Web server (that
has the .NET Framework and supporting files installed) for your
project while it’s under construction, and Visual Studio will use the
specified Web server to place and organize your project files. The
Web server isn’t identified by using a drive and folder names, but
rather by using a valid Internet address (URL).

3 Enter your Web server URL and the Web application name in the
Location text box. Because these steps assume your Web server is on
your local machine, type http://localhost/MyWebCalculator.
Your screen will look this:

g22ip05 4 Click OK.

� Note If Visual Studio displays an error while attempting to create a new
ASP.NET Web application project, your setup isn’t configured properly for
ASP.NET programming. Review the steps in the section “Installing the
Software for ASP.NET Programming” earlier in this chapter to make sure
you have the proper software installed.

A
bb

re
v.

 C
ha

pt
er

 T
itl

e
D

is
pl

ay
in

g
H

TM
L

D
oc

um
en

ts
U

si
ng

 W
eb

 F
or

m
s

2
2

Chapter 22 Using Web Forms to Build Interactive Web Applications 555

Visual Studio loads the Web Forms Designer and creates a Web
Forms page (WebForm1.aspx) that will contain the user interface
and a code-behind file (WebForm1.aspx.vb) that will contain the
code for your Web application. Your screen will look like this:

g22ip06 Unlike the Windows Forms Designer, the Web Forms Designer dis-
plays the Web Forms page in the center of the development environ-
ment by using a large white document window and a grid of tiny
gray dots. Two tabs at the bottom of the designer (Design and
HTML) allow you to change your view of this Web Forms page. The
Design tab (the default view) shows you approximately how your
Web Forms page will look when a Web browser displays it. When the
Design tab is selected, you can choose either grid layout mode or flow
layout mode to control how the objects on your Web Forms page are
arranged. The message you see on the Web Forms page describes
these two modes. (You’ll experiment with them in the next section.)
The HTML tab at the bottom of the designer lets you view and edit the
HTML code that’s used to display the Web Forms page in a Web
browser. If you’ve used Microsoft Visual InterDev or Microsoft
FrontPage in the past, you’ll be familiar with these two ways of

HTML tab

Design tab

Web Forms controls

Formatting toolbar Web Forms Designer WebForm1.aspx file

A
bbrev. C

hapter Title
D

isplaying H
TM

L D
ocum

ents
U

sing W
eb Form

s
2

2

556 Part 6 Internet Programming

displaying a Web Forms page and perhaps with some of the HTML
formatting codes that control how Web Forms pages are actually
displayed.
A few additional changes in Visual Studio are also worth noting at
this point. Below the Standard toolbar are new Design and Format-
ting toolbars, which contain design and formatting options for your
Web Forms page. The Web Forms tab of the Toolbox is visible on the
left side of the screen and offers the Web Forms controls that you can
use to customize your ASP.NET Web applications. (If you don’t see
the Web Forms controls, click the Web Forms tab now.) Solution
Explorer on the right side of the screen contains a different list of
project files for the Web application you’re building. In particular,
notice the WebForm1.aspx file in Solution Explorer, which contains
the user interface code for this Web Forms page.
Now you’re ready to add some text to the Web Forms page by using
the Web Forms Designer.

Using the Web Forms Designer
Unlike a Windows Form, a Web Forms page can have text added directly to it
when it’s in flow layout mode in the Web Forms Designer. In flow layout mode,
text appears in top-to-bottom fashion as it does in a word processor such as
Microsoft Word. You can type text in flow layout mode, edit it, and then make
formatting changes by using the Formatting toolbar. Manipulating text in this
way is usually much faster than adding a Web Forms Label control to the Web
page to contain the text. You’ll practice entering the text for your car loan cal-
culator in the following exercise.

Add text in flow layout mode
1 Click the Web Forms page in the Web Forms Designer, and then open

the Properties window.
You’ll change the Web Forms Designer from grid layout mode to
flow layout mode to facilitate text entry on the form, but before you
do so you need to select the Web Forms page in the designer. When
the Web Forms page is selected, the label DOCUMENT will appear
in the Object drop-down list box of the Properties window.

2 Change the pageLayout property of the DOCUMENT object to
FlowLayout.

A
bb

re
v.

 C
ha

pt
er

 T
itl

e
D

is
pl

ay
in

g
H

TM
L

D
oc

um
en

ts
U

si
ng

 W
eb

 F
or

m
s

2
2

Chapter 22 Using Web Forms to Build Interactive Web Applications 557

Visual Studio removes the grid from the Web Forms page. You can
switch between flow layout and grid layout by changing the page-
Layout property when the DOCUMENT object is selected.

3 Click the Web Forms page again.
A blinking text cursor appears at the top of the Web Forms page.

4 Type Car Loan Calculator, and then press Enter.
Visual Studio displays the title of your Web application on the Web
Forms page exactly as it will appear when you run the program in
your browser.

5 Type the following sentence below the application title:
Enter the required information and click Calculate!
Now you’ll format the title with bold formatting and a larger point
size.

6 Select the Car Loan Calculator text.
When you select text on the form, the Formatting toolbar displays
font information for the text you selected.

7 Click the Bold button on the Formatting toolbar, and set the font
size to 5.
Font size isn’t specified in points in Web applications, but rather in
relative sizes. (Font size 5 is about 18-point type.) Your screen will
look like this:

g22ip07 Now you’ll examine the HTML code for the text you entered.

Formatted text on Web Forms page

Formatting toolbar

A
bbrev. C

hapter Title
D

isplaying H
TM

L D
ocum

ents
U

sing W
eb Form

s
2

2

558 Part 6 Internet Programming

View the HTML for a Web Forms page
1 Click the HTML tab at the bottom of the Web Forms Designer.

The HTML tab displays the actual HTML code for your Web Forms
page. To see more of the code, you might want to temporarily close
the Toolbox. The HTML code for the Web Forms page looks like this:

g22ip08 A Web Forms page is made up of file and document information, for-
matting codes called HTML tags that are enclosed in angle brackets,
and the text and objects to be displayed by your Web Forms page. This
Web Forms page is still rather short—it contains a header with infor-
mation about the language you selected when creating the Web appli-
cation, the name of any code-behind file, and any inherited forms.
The body tag identifies the beginning of the document; tags typically
always appear in pairs so that you can see clearly where a section
begins and ends. Notice that the “Car Loan Calculator” text appears
within a line of HTML that formats the text as strong (bold) with
font size 5. Below this text, the second line of text you entered is dis-
played.

� Tip The HTML view is an actual editor, so you can change the text you
entered now by using standard text editing techniques. If you know
something about HTML, you can add additional formatting tags and
content as well.

A
bb

re
v.

 C
ha

pt
er

 T
itl

e
D

is
pl

ay
in

g
H

TM
L

D
oc

um
en

ts
U

si
ng

 W
eb

 F
or

m
s

2
2

Chapter 22 Using Web Forms to Build Interactive Web Applications 559

2 Click the Design tab to display your Web Forms page in Design view,
and open the Toolbox if you closed it.

3 Select DOCUMENT in the Object drop-down list box of the Proper-
ties window.

4 Set the pageLayout property to GridLayout.
You’re finished adding text to the Web Forms page, so you can
switch from flow layout to grid layout.

Flow Layout vs. Grid Layout
Why are there two different layout modes, flow layout and grid layout? Each lay-
out mode has advantages and disadvantages, but fundamentally, the choices
are designed to give you, the Web application designer, different ways to control
how a Web form looks in a Web browser. Grid layout allows you to precisely posi-
tion, size, and even overlap objects on a Web Forms page. The drawback is that
grid layout generates more complicated HTML to position the objects, which
might not display as expected in different or older browsers. If you want your
Web applications to display cleanly in the widest range of Web browsers, set the
pageLayout property to FlowLayout and the targetSchema property to Internet
Explorer 3.02 / Navigator 3.0.

Adding Web Forms Controls to a Web
Application

Now you’ll add TextBox, Label, and Button controls to the car loan calculator.
Although these controls are located on the Web Forms tab of the Toolbox,
they’re very similar to the Windows Forms controls of the same name that
you’ve used throughout this book. (I’ll cover a few of the important differences
coming up.) After you add the controls to the Web Forms page, you’ll set prop-
erty settings for the controls.

Use TextBox, Label, and Button controls
1 Display the Web Forms tab of the Toolbox if it isn’t already visible,

and verify that the Web Forms page is in grid layout mode. (The grid
should be visible on the form.)

A
bbrev. C

hapter Title
D

isplaying H
TM

L D
ocum

ents
U

sing W
eb Form

s
2

2

560 Part 6 Internet Programming

2 Click the Web Forms TextBox control, and then create a text box
object on the Web Forms page below the text you entered. Align the
text box object along the left margin.
Visual Studio allows you to create Web Forms controls just as you
create Windows Forms controls. Because the Web Forms page is in
grid layout mode, you can size and position the controls precisely, just
as you can fine-tune the placement of controls on a Windows Form.
Notice the small green icon that appears in the upper left corner of
the control, which indicates that this control runs on the server.

3 Create two more text box objects below the first text box.
Now you’ll create labels by using the Web Forms Label control to
identify the purpose of the text boxes.

4 Click the Web Forms Label control, and then draw a label object to
the right of the first text box object.

5 Create two more label objects below the first label object and to the
right of the second and third text box objects.

6 Use the Web Forms Button control to draw a button object at the
bottom of the Web Forms page.
The Button control, like the TextBox and Label controls, is very
similar to its Windows Forms counterpart. Your screen should look
like this:

g22ip09 Now you’ll set a few properties for the seven new controls you cre-
ated on the Web Forms page. As you set the properties, you’ll notice
one important difference between Web Forms and Windows

Green icon indicates server control

A
bb

re
v.

 C
ha

pt
er

 T
itl

e
D

is
pl

ay
in

g
H

TM
L

D
oc

um
en

ts
U

si
ng

 W
eb

 F
or

m
s

2
2

Chapter 22 Using Web Forms to Build Interactive Web Applications 561

Forms—the familiar Name property has been changed to ID in Web
Forms. Despite their different names, the two properties perform the
same function.

7 Set the following properties for the objects on the form:

Your Web Forms page will look like this:

g22ip10

Writing Event Procedures for Web Forms Controls
You write event procedures (or event handlers) for controls on a Web Forms
page by double-clicking the objects on the Web Forms page and typing the nec-
essary program code in the Code Editor. Although the user will see the controls
on the Web Forms page in his or her own Web browser, the actual code that’s
executed is located on the Web server and is run by the Web server. When the

Object Property Setting
TextBox1 ID txtAmount

TextBox2 ID txtInterest

TextBox3 ID txtPayment

Label1 ID
Text

lblAmount
“Loan Amount”

Label2 ID
Text

lblInterest
“Interest Rate (for example,
0.09)”

Label3 ID
Text

lblPayment
“Monthly Payment”

Button1 ID
Text

btnCalculate
“Calculate”

A
bbrev. C

hapter Title
D

isplaying H
TM

L D
ocum

ents
U

sing W
eb Form

s
2

2

562 Part 6 Internet Programming

user clicks a button, for example, the browser typically sends the button click
event back to the server, which processes the event and sends a new Web page
back to the browser. Although the process seems similar to that of Windows
Forms, there’s actually a lot going on behind the scenes when a control is used
on a Web Forms page!

In the following exercise, you’ll practice creating an event procedure for the
btnCalculate object on the Web Forms page.

Create the btnCalculate_Click event procedure
1 Double-click the Calculate button on the Web Forms page.

The code-behind file (WebForm1.aspx.vb) is opened in the Code Edi-
tor, and the btnCalculate_Click event procedure appears.

2 Type the following program code:
Dim LoanPayment As Single
‘Use Pmt function to determine payment for 36 month loan
LoanPayment = Pmt(txtInterest.Text / 12, 36, txtAmount.Text)
txtPayment.Text = Format(Abs(LoanPayment), “$0.00”)

This event procedure uses the Pmt function, a financial function
that’s part of the Visual Basic language, to determine what the
monthly payment for a car loan would be by using the specified
interest rate (txtInterest.Text), a three-year (36-month) loan period,
and the specified principal amount (txtAmount.Text). The result is
stored in the LoanPayment single-precision variable and then for-
matted with appropriate monetary formatting and displayed by
using the txtPayment text box object on the Web page. The Abs
(absolute value) function is used to make the loan payment a positive
number—the Pmt function returns a negative number by default
(reflecting money that’s owed), but I think this formatting looks
strange when it isn’t part of a balance sheet.
Notice that the program statements in the code-behind file are just
regular Visual Basic code—the same stuff you’ve been using through-
out this book. You’ll even use an Imports statement. This process
feels similar to creating a Windows application.

3 Scroll to the top of the Code Editor, and enter the following program
statement as the first line of the file:
Imports System.Math

As you learned in Chapter 5, the Abs function isn’t included in Visual
Basic by default, but it’s part of the System.Math class in the .NET
Framework, which can be included in your project via the Imports

A
bb

re
v.

 C
ha

pt
er

 T
itl

e
D

is
pl

ay
in

g
H

TM
L

D
oc

um
en

ts
U

si
ng

 W
eb

 F
or

m
s

2
2

Chapter 22 Using Web Forms to Build Interactive Web Applications 563

statement. Web applications can make use of the .NET Framework
class libraries just as Windows applications can.

4 Click the Save All button on the Standard toolbar.

That’s it! You’ve entered the program code necessary to run the car loan calcu-
lator and make your Web Forms page interactive. Now build the project and
see how it works!

Build and run the Web application
1 Click the Start button on the Standard toolbar.

� Note If an error displays here indicating that the Web server doesn’t
support debugging ASP.NET Web applications, it means that IIS, the
FrontPage 2000 Server Extensions, and the .NET Framework aren’t prop-
erly installed and configured. Review the section “Installing the Software
for ASP.NET Programming” for recommendations on how to correct this.

Visual Basic builds the project and runs it by using Internet Explorer.
The car loan calculator looks like this:

g22ip11 2 Type 18000 in the Loan Amount text box, and then type 0.09 in the
Interest Rate text box.
You’ll compute the monthly loan payment for an $18,000 loan at 9
percent interest for 36 months.

3 Click the Calculate button.

A
bbrev. C

hapter Title
D

isplaying H
TM

L D
ocum

ents
U

sing W
eb Form

s
2

2

564 Part 6 Internet Programming

Visual Basic calculates the payment amount and displays $572.40 in
the Monthly Payment text box. Your screen will look like this:

g22ip12 4 Close Internet Explorer.
You’re finished testing your Web application for now. When Internet
Explorer closes, your program is effectively ended. As you can see,
building and running a Web application is basically the same as for a
Windows application, except that the final application is run in the
browser. You can even set break points and debug your application just
as you can in a Windows application. To deploy a Web application,
you’d need to copy the .aspx file and any necessary support files for the
project to a properly configured virtual directory on the Web server.

Validating Input Fields on a Web Forms Page
Although this Web application is useful, it runs into problems if the user forgets
to enter a principal amount or an interest rate or specifies data in the wrong for-
mat. To make this Web application more robust, consider adding one or more
validator controls to the Web Forms page that will require user input in the proper
format. The validator controls are located on the Web Forms tab of the Toolbox
and include controls that require data entry in important fields (RequiredField-
Validator), require entry in the proper range (RangeValidator), and so on. For
information on the validator controls, search the Visual Studio online Help.

A
bb

re
v.

 C
ha

pt
er

 T
itl

e
D

is
pl

ay
in

g
H

TM
L

D
oc

um
en

ts
U

si
ng

 W
eb

 F
or

m
s

2
2

Chapter 22 Using Web Forms to Build Interactive Web Applications 565

One Step Further: Creating a Link to Another
Web Page

If your Web application will feature more than one Web page, you might want
to use the HyperLink control on the Web Forms tab of the Toolbox to let your
users jump from the current Web page to a new one. The HyperLink control
places a hyperlink, which the user can click to display another Web page, on the
current Web page. When you use a HyperLink control, you specify the text that
will be hyperlinked, and you specify the desired resource to display (either a
URL or a local path) by using the NavigateUrl property.

If you’ve already created the Web pages, you can add them to your Web appli-
cation project and establish the proper links. If you want to create new Web
pages, you can use Visual Studio .NET.

In the following exercise, you’ll create a second Web page by using Visual Studio,
and you’ll save it in HTML format along with your other project files. The docu-
ment will be a Help file that users of your Web application can access to get more
information. Next you’ll add a HyperLink control to the WebCalculator project
and set the HyperLink control’s NavigateUrl property to the new HTML page.

Create an HTML page
1 Click the Add HTML Page command on the Project menu.

The Add New Item dialog box appears with the HTML Page tem-
plate selected.

2 Type WebCalculatorHelp.htm in the Name text box, and click Open.
The WebCalculatorHelp.htm file is added to Solution Explorer and is
opened in the HTML Designer in Design view.
Notice that the Web Forms tab is no longer displayed in the Tool-
box. Because this is an HTML page, the Web Forms controls aren’t
supported.

3 Click the HTML page and change the pageLayout property in the
Properties window to FlowLayout.
Visual Studio removes the grid from the HTML page.

4 Click the HTML page to add your cursor, and type the following text:
Car Loan Calculator
This Car Loan Calculator program was developed for the book
Microsoft Visual Basic .NET Step by Step—Version 2003, by
Michael Halvorson (Microsoft Press, 2003). The Web application is
best viewed using Microsoft Internet Explorer version 5.0 or later.

A
bbrev. C

hapter Title
D

isplaying H
TM

L D
ocum

ents
U

sing W
eb Form

s
2

2

566 Part 6 Internet Programming

To learn more about how this application was created, read Chapter
22 in the book.
Operating instructions:
Type a loan amount, without dollar sign or commas, into the Loan
Amount text box.
Type an interest rate in decimal format into the Interest Rate text
box. Do not include the “%” sign. For example, to specify a 9%
interest rate, type “0.09”.
Note that this loan calculator assumes a three year, 36-month pay-
ment period.
Click the Calculate button to compute the basic monthly loan pay-
ment that does not include taxes or other bank fees.

5 Using the Formatting toolbar, add bold and italic formatting, as
shown here:

g22ip13 Now you’ll use the HyperLink control to create a hyperlink on your Web
Forms page that opens the WebCalculatorHelp.htm file.

Use the HyperLink control
1 Display the Web Forms page (WebForm1.aspx) in Design view.
2 Click the HyperLink control on the Web Forms tab of the Toolbox,

and then draw a hyperlink object on the Web Forms page to the right
of the Calculate button.

3 Set the Text property of the hyperlink object to “Get Help”.
The Text property contains the text that will appear underlined on the
Web Forms page as the hyperlink. You want to use words here that will
make it obvious that there’s a Web page available containing Help text.

A
bb

re
v.

 C
ha

pt
er

 T
itl

e
D

is
pl

ay
in

g
H

TM
L

D
oc

um
en

ts
U

si
ng

 W
eb

 F
or

m
s

2
2

Chapter 22 Using Web Forms to Build Interactive Web Applications 567

4 Click the NavigateUrl property, and then click the ellipsis button in
the second column.
Visual Studio opens the Select URL dialog box, which prompts you
for the location of the Web page you want to link to.

5 Click the WebCalculatorHelp.htm file in the Contents pane.
The URL text box displays the name of the file you want to use as
the hyperlink. Your dialog box will look like this:

g22ip14 6 Click OK to set the NavigateUrl property.
Your Web page looks like this:

g22ip15 Your link is finished, and you’re ready to run the WebCalculator
application again.

New hyperlink object

A
bbrev. C

hapter Title
D

isplaying H
TM

L D
ocum

ents
U

sing W
eb Form

s
2

2

568 Part 6 Internet Programming

7 Click the Save All button on the Standard toolbar.
8 Click the Start button.

� Note The complete WebCalculator program is located in the
c:\vbnet03sbs\chap22\webcalculator folder. See the readme file in the
chap22 folder for instructions on how to configure and test the Web-
Calculator program.

Visual Studio builds the Web application and runs it in Internet
Explorer.

9 Compute another loan payment to verify that the original program is
operating correctly. (Specify your own principal amount and interest
rate this time.)

10 Now click the Get Help hyperlink to see how the HyperLink control
works.
After a moment, Internet Explorer displays the second Web page.
Your screen looks like this:

g22ip16 11 Read the text, and then click the Back button in Internet Explorer.
Just like any Web application, this one lets you click the Back and
Forward buttons to jump from one Web page to the next.

12 When you’re finished experimenting with the Web Calculator pro-
gram, close Internet Explorer. You’re finished working with Visual
Basic .NET for now.

As you add additional HTML pages to your solution, feel free to add additional
hyperlinks by using the handy HyperLink control. Although ASP.NET has

A
bb

re
v.

 C
ha

pt
er

 T
itl

e
D

is
pl

ay
in

g
H

TM
L

D
oc

um
en

ts
U

si
ng

 W
eb

 F
or

m
s

2
2

Chapter 22 Using Web Forms to Build Interactive Web Applications 569

many additional capabilities, you can see from these simple exercises how pow-
erful Web Forms are and how similar the development process is to the Win-
dows Forms techniques you’ve been learning about.

Congratulations on completing the entire Microsoft Visual Basic .NET Step by
Step—Version 2003 programming course! You’re ready for more sophisticated
Visual Basic .NET challenges and programming techniques. Check out the
resource list in Appendix B for a few ideas about continuing your learning.

Chapter 22 Quick Reference
To Do this
Create a new Web appli-
cation

Select the ASP.NET Web Application icon in the New
Project dialog box, and then specify a Web server and a
project name.

Enter text on a Web
Forms page or an
HTML page

Use the Properties window to change the DOCUMENT
object’s pageLayout property to FlowLayout, and then
click the page and type the text you want to add.

Format text on a Web
Forms page or an
HTML page

In flow layout mode, select the text on the page that you
want to format, and then click a button or control on the
Formatting toolbar.

View the HTML code in
your Web Forms page or
HTML page

Click the HTML tab at the bottom of the designer.

Display the layout grid
in the Web Forms
Designer or HTML
Designer

Use the Properties window to change the DOCUMENT
object’s pageLayout property to GridLayout.

Add controls to a Web
Forms page

Display the HTML or Web Forms tabs of the Toolbox, and
drag controls to the Web Forms page in the Web Forms
Designer.

Change the name of an
object on a Web Forms
page

Use the Properties window to change the object’s ID prop-
erty to a new name.

Write an event proce-
dure for an object on a
Web Forms page

Double-click the object to display the code-behind file, and
write the event procedure code for the object in the Code
Editor.

Verify the format of the
data entered by the user
into a control on a Web
Forms page

Use one or more validator controls from the Web Forms
tab of the Toolbox to test the data entered in an input
control.

A
bbrev. C

hapter Title
D

isplaying H
TM

L D
ocum

ents
U

sing W
eb Form

s
2

2

570 Part 6 Internet Programming

Run a Web application
in Visual Studio

Click the Start button on the Standard toolbar. Visual
Studio will build the project and load the Web application
into Internet Explorer.

Create an HTML page
for a project

Click the Add HTML Page command on the Project menu,
and then add the new HTML page to the project. Create
and format the HTML page by using the HTML Designer.

Create a link to other
Web pages in your Web
application

Add a Web Forms HyperLink control to your Web Forms
page, and then set the control’s NavigateUrl property to
the address of the linked Web page.

To Do this

	Destination .NET: Migrating to Visual Basic .NET
	Copyright Page
	Acknowledgements

	Table of Contents
	Introduction
	Part I: Visual Basic .NET
	Chapter 1: Visual Basic .NET Is More Than Visual Basic 6 + 1
	Why Break Compatibility?
	Adding New Features
	Fixing the Language
	Modernizing the Language

	It Is Still Visual Basic
	Expect Subtle Differences
	Plan for a 95 Percent Automated Upgrade

	Why Should I Upgrade?
	New Language Features
	Windows Forms
	New Web Development Features
	Better Development Environment
	Is Visual Basic Still the Best Choice for Visual Basic Developers?

	Chapter 2: Visual Basic 6 and Visual Basic .NET: Differences
	.NET Framework vs. ActiveX
	.NET Framework
	Memory Management
	Type Identity
	Threading Model

	Differences in the Development Environment
	Menu Editor
	Toolbox
	Property Browser
	Tab Layout Editor

	Forms Packages
	A Single Standard for Windows Forms
	Two Forms Packages for the Price of One

	Language Differences
	All Subroutine Calls Must Have Parentheses
	ByVal or ByRef Is Required
	Is That My Event?
	Arrays Must Have a Zero-Bound Lower Dimension
	Fixed-Length Strings Are Not Supported
	Variant Data Type Is Eliminated
	Visibility of Variables Declared in Nested Scopes Is Limited

	Changes in the Debugger
	No Edit and Continue
	Cannot Continue After an Error
	No Repainting in Break Mode

	The .NET Framework Class Library
	Structures

	Chapter 3: Exception Handling
	The Exception Object
	Types of Exception Handlers
	Writing an Exception Handler by Using Try...Catch...Finally
	Catching Exceptions
	Exception Handlers and the Call Stack

	Central Exception Handlers
	Logging Exceptions to a Text File

	Directives
	3.1 Use Try…Catch…Finally to handle unexpected as well as anticipated exceptions.
	3.2 Use a consistent format when dealing with unanticipated exceptions.
	3.3 Never blame the user.

	Chapter 4: Arrays, Lists, and Collections
	The Array Class
	Creating Nonzero-Based Arrays
	Copying Arrays
	Sorting Elements
	Clearing, Copying, and Moving Elements
	Searching Values
	Arrays of Arrays

	The System.Collections Namespace
	The ICollection, IList, and IDictionary Interfaces
	The BitArray Class
	The Stack Class
	The Queue Class
	The ArrayList Class
	The Hashtable Class
	The SortedList Class
	The StringCollection and StringDictionary Classes

	Custom Collection and Dictionary Classes
	The ReadOnlyCollectionBase Abstract Class
	The CollectionBase Abstract Class
	The DictionaryBase Abstract Class

	Chapter 5: Windows Forms Applications
	Form Basics
	The Form Designer
	The Windows Forms Class Hierarchy

	Using Menus
	Creating Menus at Design Time
	Using the MainMenu Component
	Separating Menu Items

	Modifying Menus at Run Time
	Enabling and Disabling Menu Commands
	Displaying Check Marks on Menu Items
	Displaying Radio Buttons on Menu Items
	Making Menu Items Invisible
	Cloning Menus
	Merging Menus at Run Time
	Adding Menu Items at Run Time

	Part II: Object-Oriented Programming
	Chapter 6: Object-Oriented Programming in Visual Basic .NET
	An Object Lesson
	Starting Out with Objects
	A Class Is Really Only a Blueprint
	Let’s Talk Objects
	Our Form as an Object
	Reading, Writing, Invoking

	Inheritance
	Understanding Namespaces

	Polymorphism

	Chapter 7: Inheritance
	Inheritance in Previous Visual Basic Versions
	Inheritance by Delegation
	Inheritance and Late-Bound Polymorphic Code
	Early-Bound Polymorphic Code

	Inheritance in Visual Basic .NET
	Extending the Derived Class
	Using the Derived Class
	Inheriting Events
	Inheriting Shared Members
	Polymorphic Behavior

	Overriding Members in the Base Class
	Override Variations
	The MyBase Keyword
	Constructors in Derived Classes
	Finalizers in Derived Classes
	The MyClass Keyword
	Member Shadowing
	Redefining Shared Members

	Sealed and Virtual Classes
	The NotInheritable Keyword
	The MustInherit Keyword
	The MustOverride Keyword

	Scope
	Nested Classes
	Public, Private, and Friend Scope Qualifiers
	The Protected Scope Qualifier
	The Protected Friend Scope Qualifier
	Using Scope Qualifiers with Constructors

	Redefining Events

	Part III: ADO.NET
	Chapter 8: ADO.NET
	Introducing ADO.NET
	Major Changes from ADO
	.NET Data Providers
	Database Independence with ADO.NET
	The Connection Object
	Setting the ConnectionString Property
	Opening and Closing the Connection
	Working with Transactions

	The Command Object
	Creating a Command Object
	Issuing Database Commands
	Reading Data
	Working with Parameters and Stored Procedures

	The DataReader Object
	Iterating over Individual Rows
	Reading Column Values
	Using Specific SQL Server Types
	Reading Multiple Resultsets

	The DataSet Object
	Exploring the DataSet Object Model

	The DataAdapter Class
	Introducing the DataAdapter
	Reading Data from a Database

	Adding a DataAdapter Object to Our Program
	Finishing the User Interface
	A Sneak Preview of Our Data from the DataAdapter

	Part IV: ASP.NET
	Chapter 9: ASP.NET and Web Services
	A Look Back at ASP
	Why ASP.NET?
	Our First Web Form
	New Server Controls
	The HTML Presentation Template
	Viewing the Code-Behind File
	Setting the Properties on Our Web Page
	Adding the Calendar Control Code
	Running the Web Form
	Examining the HTML Sent to the Browser

	Building a Loan Payment Calculator
	Building Our Loan Application Project
	Adding Code to the Code-Behind Form
	The Life of a Web Form
	How Our Program Works
	Taking a Closer Look at Our Drop-Down List
	Adding the Payment Schedule Page
	Adding Our Class Code
	How the Calculator Works
	Tracing Our Program

	Web Services: The New Marketplace
	What Are Web Services?
	OK, Now How Do We Communicate?
	Finding Out Who Is Offering What in the Global Marketplace
	Where Are Web Services Going?

	Building a Web Service
	Run the Program
	Consuming the MagicEightBall Web Service
	Building Our Web Services Client Program
	Adding a Proxy Class to Our Program
	Adding Code to Get Our Magic Eight Ball Answers

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Microsoft Visual Basic .NET Step By Step
	Copyright Page

	Chapter 14: Deploying Visual Basic .NET Applications
	Planning a Deployment
	Different Ways to Deploy an Application

	Creating a Deployment Project
	Create a deployment project by using the Setup Wizard
	Run the Setup Wizard
	Create a deployment project by using the Setup Project template

	Customizing Your Deployment Options
	Configure build settings
	Create an application shortcut
	Set company name and version information
	Set deployment property pages

	Building a Deployment Project and Testing Setup
	Build the project
	Run the Setup program
	Run the Lucky Seven application

	One Step Further: Examining Setup Files and Uninstalling
	Check final installation files
	Uninstall the test application

	Lesson 14 Quick Reference

	Chapter 22: Using Web Forms to Build Interactive Web Applications
	Inside ASP.NET
	Web Forms vs. Windows Forms
	HTML Controls
	Web Forms Controls

	Getting Started with a Web Application
	Installing the Software for ASP.NET Programming
	Install IIS and the FrontPage 2000 Server Extensions
	Repair the .NET Framework
	Create a new Web application

	Using the Web Forms Designer
	Add text in flow layout mode
	View the HTML for a Web Forms page

	Adding Web Forms Controls to a Web Application
	Use TextBox, Label, and Button controls
	Writing Event Procedures for Web Forms Controls
	Create the btnCalculate_Click event procedure
	Build and run the Web application

	One Step Further: Creating a Link to Another Web Page
	Create an HTML page
	Use the HyperLink control

	Chapter 22 Quick Reference

